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Abstract
Orchestration is the art of composing for an ensemble of instruments, involving the
blending and contrasting of instrumental timbres to create a cohesive orchestral sound.
It requires both high-level artistic planning of musical ideas and precise, fine-grained
control over technical details. Each part must be playable on its specific instrument and
fit well with the rest of the ensemble.
This thesis aims at formalizing and expanding the knowledge of orchestration by de-
scribing it through the lens of mathematics and computer science, while proposing
models and tools for the computational analysis of orchestral music and human-
machine co-creative orchestration.
A key focus of this thesis is the concept of orchestral texture, which refers to the roles,
functions, and combinations of the instrumental parts within a composition. We intro-
duce three abstract models of orchestration, release a multi-modal corpus of annotated
orchestral scores, and propose a framework for computer-assisted orchestration, which
has been successfully applied in a co-creative orchestration project.
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Resumé
L’orchestration est l’art de composer pour un ensemble d’instruments, impliquant le
mélange et le contraste des timbres instrumentaux pour créer un son orchestral co-
hérent. Elle exige à la fois une planification artistique de haut niveau des idées mu-
sicales et un contrôle précis et minutieux des détails techniques. Chaque partie doit
pouvoir être jouée sur l’instrument qui lui est propre et s’accorder avec le reste de
l’ensemble.
Cette thèse vise à formaliser et à élargir les connaissances sur l’orchestration en la
décrivant sous l’angle des mathématiques et de l’informatique, tout en proposant
des modèles et des outils pour l’analyse informatique de la musique orchestrale et
l’orchestration co-créative homme-machine.
L’un des points clés de cette thèse est le concept de texture orchestrale, qui fait référence
aux rôles, fonctions et combinaisons des parties instrumentales au sein d’une com-
position. Nous présentons trois modèles abstraits d’orchestration, nous publions un
corpus multimodal de partitions orchestrales annotées et nous proposons un cadre
pour l’orchestration assistée par ordinateur, qui a été appliqué avec succès dans un
projet d’orchestration co-créative.
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1. Introduction
The Grove music dictionary defines orchestration as “the art of combining the sounds
of a complex of instruments (an orchestra or other ensemble) to form a satisfactory blend and
balance” [145]. Orchestration is much more than a mere distribution of the voices
among the instruments, it involves blending or opposing the sounds of a possibly
large ensemble to create an orchestral texture. One may argue that, when put in the
context of the orchestra, the instruments partially lose their individuality, and the
entire orchestra should be considered as one big instrument. The high variety of the
possibilities offered by the individual instruments and their combinations gives to the
“orchestra-as-an-instrument” potentially infinite sounds and timbres. In 1844, Berlioz
wrote in its Grand traité d’instrumentation et d’orchestration modernes [19, p. 240 of the
1852 translation]:

“ The orchestra may be considered as a large instrument capable of uttering at once
or successively a multitude of sounds of different kinds; and of which the power is
mediocre or colossal according as it employs the whole or a part only of the executive
means belonging to modern music, and according as those means are well or ill
chosen and placed in acoustic conditions more or less favorable. ”

A composition can be directly written for the orchestra, or alternatively composition and
orchestration can be considered as two separate tasks.
In large productions for the movie industry, for example, it is common to have a lead
composer that writes the main thematic material and a team of orchestrators that, su-
pervised by the lead composer, take care of the arrangements that have to appear at
different moments of the movie [235]. In any case, the artists have to pay attention to
the characteristics of the individual instruments, what each of them plays, and that the
overall combination creates the desired “orchestral texture”.
This complexity is the source of big challenges for the creators, and for theorists who
want to formalize and teach such topics. As for other topics in music theory and com-
position, the formalization and teaching of instrumentation and orchestration have im-
proved over time, starting from the 19th century. Various orchestration treatises include
works by Rimsky-Korsakov, Forsyth, Koechlin, Piston, McKay [223, 82, 142, 211, 182],
and more recently Adler [4]. They cover topics such as organology and instrumentation,
detailing the musical capabilities of each individual instrument and their combinations
to shape the sound of the orchestra. The most recent treaties also add substantial
sections on combining instruments and describing perceptual effects stemming from
these combinations. Music conservatories and music departments now offer dedicated
orchestration classes.

1



1. Introduction

The goals of this thesis are to expand the knowledge on orchestration making a step
towards a better formalization of this art, and to design tools for the analysis and co-
creation of orchestral music. We address these problems by exploring and proposing
models to describe orchestration with the language of mathematics and computer sci-
ence. A particular attention is devoted to the elusive notion of orchestral texture, which
describes both the combinations of the instruments used and the different techniques
with which each instrument is played. We use a variety of methods, including machine
learning, always aiming at explicability and interpretability for the users, in the context
of explainable and human-centered artificial intelligence.

After this introduction and Chapter 2 presenting the state of the art, this thesis is
divided in three parts with two chapters each.

Part I: Modeling Orchestration While formal models to describe harmony in tonal mu-
sic (like roman numerals) are well established in classical music theory, other important
factors of symphonic music like texture and orchestration are mostly transmitted from
master to apprentice without a real formalization. Building on concepts from music
theory and perception we propose three abstract models of orchestral texture and or-
chestration (Chapter 3) and a framework for co-creative interaction in orchestration
(Chapter 4).
The first model introduced in Chapter 3 is a taxonomy of orchestral texture to systemat-
ically describe orchestration in the western classical style with a language inspired by
information science, using layers with roles and relations. In this chapter, we show its
descriptive power, but also the ambiguities that emerge. The second model is an ab-
stract version of a piece representing an orchestral composition “before orchestration”
that we call layer score. It represents the information about notes and layers without
the instrumentation. The third model is called orchestration plan and it can be used to
prescribe the instrumentation of a piece. The main contribution from this chapter is
the formalization of existing concepts into these three objects.
Two main contributions are presented in Chapter 4. The first one is a table reorganiz-
ing existing Music Information Retrieval (MIR) orchestration tasks in light of the three
abstract models proposed, and identifying new tasks. The second one is a process for
computer-assisted orchestration that we propose. It uses layer scores and orchestration
plans as intermediate objects in a process with clear steps and tasks allowing humans
and machines to collaborate in orchestrating an existing piece of music.

Part II: Orchestral Music Analysis The analysis of orchestration and orchestral texture
with computational tools can be facilitated by open corpora. We published with open
data licenses a corpus of first movements of classical and early-romantic symphonies
annotated following the taxonomy of orchestral texture. The corpus, which is a con-
tribution from this thesis presented in Chapter 5, has later been enriched with public
domain recordings synchronized to the score, and can be explored with Dezrann1, a

1https://www.dezrann.net/
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web platform for music annotations developed by the Algomus team. Layer scores
have also been automatically created starting from the annotated orchestral scores.
In Chapter 6 we propose a data driven method based on machine learning to detect
orchestral blends in music scores. Instrumental blending is a fundamental process in
music perception and stands as the basis of all further cognition of orchestral music.
This preliminary study offers as contributions the engineering of score-based features
that represent cues affecting instrumental blending, and their use in a model that
matches the results of the state of the art.

Part III: Orchestration and Co-creativity In the last part of the thesis we explore co-
creativity in orchestration applying our framework.
In Chapter 7 we present the orchestration of two pieces for piano solo from the suite
Angeles by Gissel Velarde that we have created in collaboration with Mael Oudin. This
project is the first real use case application of our framework for co-creative interaction
in orchestration, and has resulted in several scientific and artistic contributions: we
have developed a first model to generate orchestration plans, we have collected feed-
back from the human artists involved, and we have produced orchestral scores for the
two pieces that have been played in a live performance by Orquesta Kronos conducted
by Andrés Guzmán-Valdez.
In Chapter 8 we report a series of experiments about the generation of orchestration
with Transformers. The main contribution from this chapter is a tokenization method
to represent orchestral scores, texture annotations, layer scores, and orchestration plans.
The preliminary results of these experiments are encouraging but not conclusive, sug-
gesting that additional research is necessary to develop and train a fully operational
orchestrator Transformer.

We then conclude this thesis with Chapter 9, where we summarize the results and
we indicate the way for future research.

3





2. State of the Art

This chapter is a literature review of studies on orchestration and Music Information
Retrieval (MIR) methods that are relevant to this thesis. It is divided into 5 sections.
We start by discussing orchestration in relation to other music research disciplines
(Section 2.1); then we introduce various symbolic formats that are used to represent
music on computers for computational music analysis and generation (Section 2.2);
we continue by surveying studies in computational music analysis that are relevant
for orchestration (Section 2.3); after we present music generation models in relation
to orchestration (Section 2.4); and finally we illustrate publicly available corpora of
orchestral music (Section 2.5).

2.1. What is Orchestration?

2.1.1. Orchestration and Texture

Modeling orchestral scores is undeniably linked to the understanding of conventional
musical parameters such as melody, rhythm, harmony, and form. The elusive notion
of musical texture also plays a crucial role. The term texture has started to proliferate
in music writings starting from the middle of the 20th century. Its use became very
widespread in English texts, while remaining very marginal in other European lan-
guages, where a direct translation does not exist or already yields another meaning (for
example the Italian word tessitura is used to describe the range of an instrument or vocal
part) [71]. The term has been employed in a metaphorical sense with regard to its usage
in the visual arts, particularly painting and sculpture, but without a clear definition of its
meaning in the context of music. In its orchestration treaty, Piston describes seven cat-
egories of texture: orchestral unison, melody and accompaniment, secondary melody,
part writing, contrapuntal texture, chords, and complex textures [211, 89]. Complex
variants of the discussed textures can be created through their combinations [182]. This
‘applied’ theory of texture has utility for students learning to reproduce a particular
style. However, the number of categories tends to increase as composers invent new
textures [71].
In his study from 1960, Nordgren gives a more quantitative description of orchestral
texture [203]. He compares “textural patterns” in romantic symphonies, by modeling
eight textural parameters and their evolution: instruments number, range, register,
and spacing, the proportion and register of the gaps, doubling concentrations and the
register of concentrations. The study identifies several characteristics of the writing

5



2. State of the Art

style of Beethoven, Mendelssohn, Schumann, and Brahms1. Along the same line Row-
ell [232] proposed an expansive and elaborate description of texture with eight “textural
values”: orientation (vertical or horizontal), tangle (the interweaving of melodies), figu-
ration (the organization of music in patterns), focus vs interplay, economy vs saturation,
density (as opposed to thinness), smoothness (as opposed to toughness), and complex-
ity (as opposed to simplicity).
Texture cannot exist in isolation; rather, it serves an important role in connecting the
various elements of music. J. Levy [155] illustrates this concept through numerous
examples, demonstrating how texture in classical and early Romantic music can signal
important structural changes by utilizing accompaniment patterns, solos, and unison
to capture the listener’s attention. Levy emphasizes that while texture alone may lack
meaning, it is used to enhance the meaning carried by other musical elements.

It is nowadays widely accepted to describe texture in western classical music with
four terms: monophony (single melodic line), polyphony (interweaving melodic lines),
heterophony (melodic line with simultaneous variations), and homophony (melodic line
and chordal accompaniment) [71, 18]. It should be noted that the boundaries between
these categories are blurred, with music styles existing in between them. Huron [122]
describes them as being embedded in a texture space along two axes, that he calls onset
synchronization and semblant motion (see Figure 2.1). The first refers to the number of
elements that are occurring simultaneously, while the latter to the degree of homogene-
ity or heterogeneity between these elements. Those dimensions have also been called
density (or volume) and diversity [49].
Moreira De Sousa uses the term texture space in a distinct manner. He suggests the
adoption of three texture spaces combined with mathematical operations to describe a
texture at varying levels of detail. This method can be applied for composition [58].
Texture can further be characterized by describing the simultaneous textural elements
that constitute it and the similarities and differences between them. In the description
by Benward and Saker [18], each of those simultaneous parts (or layers) serves a different
purpose and role.

• Primary melodies are the most important lines in a musical texture. In polyphonic
textures there may be several primary melodies. It is usually found as the highest
part in a composition but it does not need to be.

• Secondary melodies are other melodic lines that do not have the same importance
as the primary melody. The decision whether a melody is primary or secondary
is not trivial and it is often a matter of debate.

• Parallel supporting melodies are melodies that are similar in contour to a primary
or secondary melody. They might maintain a constant interval with the melody

1Some of Nordgren’s observations are unexpected. For example it was found that Brahms employs
textures with narrower range (depending on the interval between the lowest and highest tones) than
the other composers. The impression of a wide sonority range in Brahms, however, is explained by
his frequent shifting of register.

6



2.1. What is Orchestration?

Figure 2.1.: Huron (image reproduced from [122]) represents the four characteristic tex-
tures (Homophony, Monophony, Polyphony, and Heterophony) in a texture
space along two axes, which can be described as onset synchronization (or
density/volume) and semblant motion (or diversity). Different styles of music
find their place in this texture space.

they support. A typical example is a part moving a third or a sixth below the
main melodic line.

• Static support parts are of two types: sustained tones or chords, which are often
pedal notes, and repeated melodic and rhythmic figures or ostinati.

• Harmonic support and rhythmic support elements typically serve the role of accom-
paniment in an evolving homophonic texture. They are often combined, but they
can be separate. They are not to be confused with static support, which is used
with constant harmony or to highlight unchanging pedal tones in an evolving
harmony.

7



2. State of the Art

2.1.2. Timbre and Orchestration in Music Perception
In orchestral music, texture is highlighted by the use of different instruments, that
can be more or less similar in timbre. Timbre is a characteristic that is rooted in
the physical properties of the instrument emitting the sound and on the medium of
transmission, but it is a fundamentally perceptive phenomenon. In Music Perception
and Cognition, studies on orchestration have focused on the processing mechanisms of
sounds, and on the essence of timbre. While orchestration has long been considered a
purely artistic practice (“art and not a science” [211, p. 356]), perception scientists have
begun advocating for the integration of principles from perception studies into music
theory and composition practice, arguing against dismissing scientific approaches to
studying orchestration as completely unattainable or undesirable. In 1979 McAdams
and Bregman [176] suggested that

“ composers and music theorists should thoroughly examine the relationship be-
tween the "musical" principles they use and espouse, and the principles of sensory,
perceptual, and cognitive organization that operate in the human auditory system.
[. . . ] To ignore the evidence from the real life system in developing a theory of music
or a musical composition is to take the chance of relegating one’s work to the realm
of what might be termed "paper music." ”

Since then, perceptual studies have shown how science can be useful to composers
and orchestrators. Studies have focused on how instruments combination affects tim-
bral response, on blending qualities of instruments (based on their own and combined
timbres), and on how composers can make use of timbral consonance and dissonance
to create new sounds [139, 234, 238]. Researchers have attempted, using statistical
techniques such as multi-dimensional scaling, to embed instruments and sounds in a
timbre space where the dimensions are human-friendly descriptors [276, 130, 72]. Most
of these descriptors remain correlated to quantifiable acoustic measures [177]. Using
this space it is possible to draw trajectories between sounds, to browse instruments
more efficiently, and, when linked to a synthesis model, to perform sound morph-
ing [224, 76, 137]. Thanks to these studies the importance attributed to timbre has
shifted from being relegated as a secondary parameter in western music culture [268]
to being considered and studied as a “structuring force in music” [64, 175].

Music perception has studied the auditory grouping mechanisms related to orches-
tral music. Those phenomena are correlated to certain relations between the spectra of
the instruments (timbre) [152], to the organization of notes in the vertical (harmonicity
and parallelism) and time axes (synchrony) [24, 62], but also to performance related
parameters, such as room acoustic, spacial position of the sound sources, and musi-
cians’ intentions [57, 151]. They are at the basis of the formation of music streams2 and
orchestral textures [91].
Three orchestra related auditory grouping mechanisms have been studied by music

2Stream is a term that is used to describe a group of instrumental parts that are perceived as a whole [31].
We discuss this concept more in detail in Section 2.3.1

8
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perception researchers and are detailed by McAdams, Goodchild, and Soden in the
Taxonomy of Orchestral Grouping Effects (TOGE) [178]:

• Concurrent grouping is about the blending or contrast of instrumental sounds.
Blends can be of two types: timbral augmentation, when the sound of one instru-
ment is modified by the timbre supporting instruments, and timbral emergence,
when a new timbre emerges from the mixture. All concurrent grouping phe-
nomena can be punctuated or sustained, and, if sustained, they can be stable or
transforming.

• Sequential grouping connects these events in time (by integration or segregation)
and gives raise to the perception of different instrumental streams.

• Finally, segmental grouping acts on a higher level by enhancing the perception of
musical structure through orchestration variation in time (timbral contrasts).

F. Levy proposed functional orchestration [164], an alternative analytic framework. In
functional orchestration, orchestral music is described through functions (the musical
aim or goal), techniques and effects (the perceptual aim or result). A study comparing
analyses of the same piece (Ravel’s Alborada del Gracioso) with different taxonomies,
among which the TOGE and functional orchestration, has been carried out in the AC-
TOR3 project [277].

Some tools have been specifically developed to study orchestration and music per-
ception. The Timbre Toolbox [210] is a library allowing to easily compute a set of
acoustic descriptors related to timbre. OrchView4 is a software to annotate scores,
supporting the TOGE. Orcheil5 is a web application conceived and developed by Dolan
and Newsome to visualize graphically the orchestration of a piece [64]. A visualization
of the first movement of Beethoven 9th Symphony produced with this tool is displayed
in Figure 2.2.

2.1.3. Orchestration is a Multi-Scale Problem
Orchestral music is a rich and complex art form that captivates audiences with its in-
tricate interplay of melodies, harmonies, textures, timbres, and effects, that together
contribute to the emergence of the sound of the orchestra. To achieve a successful orches-
tration, it is essential to master the balance between low level choices (like the voicing
and instrumentation of a certain harmony or the playability and coherence of a single

3ACTOR (Analysis, Creation, and Teaching of ORchestration) is a 7-year project (2018-2025) funded by
the Social Sciences and Humanities Research Council of Canada (SSHRC). Its aim is to bring timbre
and orchestration to the forefront of scholarship, practice, and public awareness through collabo-
rations among world-class artists, humanists, and scientists. See https://www.actorproject.org/
about-actor. I have joined the project as a student member during my first year as a PhD student,
and I have participated in the three last editions of the summer workshop. In the the edition of 2024
I have presented my work in the plenary session.

4https://www.actorproject.org/workgroups/orchview
5https://orcheil.ca/
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Figure 2.2.: First movement of Symphony No. 9 by Beethoven analyzed by Orcheil.
Each colored row represents an instrument of the orchestra. Instruments
are displayed in the order in which they appear on the first page of the
score, from top to bottom. Bigger rectangles correspond to the segments in
which the instrument is playing with louder dynamics.

part) and high-level composition goals (including desired perceptual effects). Any at-
tempt to perform orchestration, or to understand it and explain it, must deal with the
fact that orchestral music has a delicate hierarchical and multi-dimensional structure.

Figure 2.3.: Orchestral music is organized with horizontal and vertical hierarchical
structures. Along the time dimension, notes are combined in motives and
themes; then motives and themes are combined to structure music, as here
in the the sonata form. Along the vertical dimension, note pitches are com-
bined into harmonies and chords, note timbres are combined into blends.
Blends give raise to streams and layers, which are juxtaposed to create dif-
ferent textures. On the largest scale, textural and timbral discontinuities
highlight the form, as here between theme A and theme B.

In orchestral music, hierarchical structures develop along a horizontal (temporal) and
a vertical (harmony and instrumentation) dimension, as illustrated by Figure 2.3. The
horizontal and vertical structures are intertwined, and interact at different scales. Some
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of these structures are common to other styles of music, while some others are related
to orchestration concepts like texture (Section 2.1.1) and timbre (Section 2.1.2), and are
specific to orchestral compositions.
The smallest unit is a note, with its pitch and duration, but also its timbre. Notes are
stacked with their pitches along the vertical dimension to form harmonies and chords.
In orchestral music, the different timbres of the instruments playing the notes are also
involved. As observed by McAdams et al. [178], when different sounds are superim-
posed, their timbres can merge to form one orchestral blend or not. We have seen in
Section 2.1.2 that this phenomenon is at the lowest level of the hierarchical organiza-
tion of perceived orchestral grouping effects. At a higher level, instrumental blends
which are synchronous and have some degree of parallelism form streams and layers
by sequential grouping (more on this is presented in Section 2.3.1). The nature of layers
and the way in which they are combined on the vertical dimension constitute different
orchestral textures. We have seen that texture is an elusive concept, that is difficult to
define. Nevertheless attempts to analyze it computationally have been made, and will
be presented in Section 2.3.2.
Along the time dimension notes are combined to form motives and themes. On a larger
scale, motives and themes are further arranged in time to produce a structure, such as
that of the sonata form (exposition-development-recapitulation) that we typically find
in first movements of classical sonatas, but also of symphonies [39].
The interconnection between the vertical and horizontal dimensions happens at the
lowest scale in the formation of streams and layers from the temporal succession of
synchronous notes of blending instruments. Another interaction between the two di-
mensions happens at a larger scale: the structure and form of a piece are constructed
horizontally by combining motives and themes, and are highlighted by the choice of
the instruments’ combinations and other vertical characteristics like texture and timbre.
In the orchestral graph displayed in Figure 2.2 we can see a visual representation of the
instrumentation of the first movement of Beethoven 9th Symphony. The structure of
the piece can be observed in the graph, that is constructed using only the information
about the instrumentation and the dynamics of the piece.

We have seen that orchestral music is a rich, multidimensional art form. According to
one’s taste and training, the attention can be captured by structures at different scales,
both during listening and analysis. Focus may fall on intricate details, like a motive or
a particular sound, or on the overall form of the piece. Understanding orchestration in-
volves studying how these hierarchical structures interact both horizontally (over time)
and vertically: how the harmonious blending of instruments gives rise to distinctive
layers, how the juxtaposition of those layers crafts diverse orchestral textures, and how
the organization of textures over time, produces the segmentation of the composition
into distinct sections, ultimately culminating in the creation of a cohesive narrative. We
study some of these interactions in this thesis: we model the vertical organization of
instrumental parts in orchestral layers and textures in Chapter 3. Their temporal orga-
nization is also described by the model. We do not directly study timbre itself, but we
model the results of timbral interactions that originate orchestral blends in Chapter 6.
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On the largest scale, a section is devoted to the interaction between texture and form in
Chapter 5.

2.2. Symbolic Music Representations
Western classical orchestral music is historically notated in music scores with many
staves. Digital representations of music scores come in different formats, which are
not completely equivalent, as the amount and type of information contained in one
format might differ from the other ones. We expect that the essential information is
conveyed by most representations, but still it is essential to chose the right format for
the specific application. However some formats are more widespread than others and
some compromises in terms of format are sometimes necessary to collect enough data.
In this section we discuss the representations that were used in this thesis, without any
claim of being exhaustive.

Standard MIDI Files The MIDI (Musical Instrument Digital Interface) standard6, which
was introduced in 1983, constituted a revolutionary development in the field of elec-
tronic music, establishing a unified communication protocol for digital instruments
and computers. Prior to the advent of MIDI, electronic instruments manufactured by
different companies were unable to interact in a seamless manner, which is the problem
addressed by MIDI. MIDI transmits standardized messages that direct instruments
on performance details such as note events (which indicate for example the onset or
release of a note, the pitch, and the velocity), control changes (which modify param-
eters such as volume, modulation, and expression), program changes (which switch
between different instrument sounds), and system messages for synchronization and
setup [160, 192]. In addition to the protocol, the MIDI file format (.mid) was developed
to digitally store these musical instructions. MIDI files comprise a sequence of MIDI
messages arranged on a timeline, representing musical performance data. This digital
score can be interpreted and played back by any device or software that is compatible
with the MIDI standard. While the MIDI protocol ensures real-time communication
between devices, the MIDI file format allows for the preservation and manipulation of
musical data, which is used for a variety of purposes, including composing, arranging,
and transferring music across different platforms.
Although MIDI was originally developed as a communication protocol between de-
vices, MIDI files have since become one of the most popular formats for exchanging
symbolic music data online and in MIR datasets. However, the information they contain
cannot be entirely related to that of a printed score.

Score Representations: **kern, MusicXML, and MEI In comparison to MIDI, score
representations incorporate additional features pertaining to the music score, while
simultaneously losing features related to performance. For instance enharmonic equiv-
alent notes such as C♯4 and D♭4 are distinguishable in a score representation, and

6https://midi.org/
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expressive indications are marked in a manner analogous to a printed score. Con-
versely, MIDI does not permit the distinction of enharmonic equivalent notes but does
allow for precise control of expression at each instant [197]. We present here three
different formats for score representation.
The **kern music format7 is an encoding system proposed by Huron [123] in 1997 and
developed as part of the Humdrum Toolkit for representing musical scores. It uses
symbolic notation to capture musical elements such as pitches, rhythms, articulations,
and dynamics. Additionally, it supports polyphonic music by aligning multiple voices
in parallel columns. The **kern format is flexible and extensible, allowing for various
annotations and metadata. It is a plain-text encoding system, and it is primarily used
in music research and analysis due to its readability and ease of processing.
The MusicXML8 format, first release in 2001, was developed with the intention of es-
tablishing a universal standard for music scores [90]. Based on the Extensible Markup
Language (XML), it is designed to serve as a music engraving software capable of rep-
resenting the full range of visual elements present in a music score, including clefs,
time signatures, notes, rests, accidentals, and dynamics.
The Music Encoding Initiative (MEI)9, started in 2002, offers a distinct standard for
musical scores. While MEI and MusicXML both encode music notation elements such
as notes, staves, rests, and clefs in XML format, they are based on different philoso-
phies. MusicXML was first intended to be used to share music content between music
editors and it is therefore primarily focused on representing the visual aspects of a
score. In contrast, MEI provides similar functionality for page layout but also focuses
on encoding the intellectual content and structure of the music notation, meaning that
it directly represents the musical relations between the objects of a score [228]. MEI
supports various notation systems beyond the standard Common Western Notation,
including mensural (Renaissance-era) and neume (Medieval) notations. MEI does not
only represent the visualization for these notations, but it preserves their structure and
semantics.

Music Representations for Machine Learning: Piano Roll and Music Tokens In many
cases, MIDI files and digital scores are not directly suitable for Music Information
Retrieval (MIR) applications employing machine learning models. Instead, lower-level
representations are necessary. Two primary representations used in music machine
learning models are the piano roll and sequences of music tokens. Both of these
representations can be derived from MIDI files or digital scores. The selection of a
representation is closely aligned with the choice of the machine learning model.
Digital piano rolls are inspired by piano rolls for player piano (see Figure 2.4). Those
were perforated papers, that were controlling a mechanical system. The paper moves
through a system that, in correspondence of a hole, activates a mechanism that plays
a note on the piano. The note is then released at the end of the hole [241]. Some
holes are dedicated to control expressive performance, but in their most basic form

7https://www.humdrum.org/
8https://www.musicxml.com/
9https://music-encoding.org/
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Figure 2.4.: On the left, a piano roll of Parade Of The Wooden Soldiers by Leon Jessel is be-
ing read by a performer piano. Image by Draconichiaro - Own work, CC BY-
SA 4.0, https://commons.wikimedia.org/w/index.php?curid=82604752.
On the right, a digital piano roll from Liszt’s Ihr Glocken von Marling, repro-
duced from [244].

each hole track corresponds to a note. In computer music, a piano roll is represented
as a matrix with a pitch and a time dimension. Non-zero values are usually associated
to the presence of a note at the given time and pitch. Different variants have been
proposed to extend the encoding to multi-track music, to allow the representation of
velocity, and to better distinguish between repeated and sustained notes. For example,
Nabeoka et al. [198] represent a multi-track score as a collection of matrices, with two
matrices for each instrument: one encoding the onset times (when a note starts) and the
other encoding the activation times (when a note is playing). Piano roll representations
are analogous to the encoding of images and have been used successfully with models
adapted from computer vision [244, 27, 51].
The representation as sequences of music tokens is influenced by the success of Large
Language Models (LLMs) in Natural Language Processing (NLP). In this approach,
music is encoded in a textual format through a sequence of word-like tokens derived
from a predefined dictionary. Numerous studies have highlighted the similarities
between music and language, suggesting that text-based models can be effectively
adapted for musical applications. However, several critical differences distinguish
symbolic music from text and language. Music is inherently structured in the time
dimension with precise rhythms; it can be polyphonic, featuring simultaneous notes;
it employs a multimodal notation system that includes various symbols (such as notes,
measures, dynamics, and tempo); it is challenging to segment objectively; and it lacks
a universally accepted “grammar” [148]. Different tokenization strategies have been
developed by researchers to represent music in a textual format [83] (see Figure 2.5
for two examples). Some of these representations directly replicate a subset of the
messages found in a MIDI file [204, 102]. However this approach is problematic since it
results in excessively long sequences that exceed the context window of certain models.
Additionally, generative models must learn to produce valid MIDI files, ensuring, for
example, that every note onset is matched with the corresponding note offset. Other
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Figure 2.5.: Example of tokenization with two different strategies: MIDI-Like (directly
replicating MIDI messages) and a REMI (encoding time with bars and
positions) . Figure reproduced from [83].

representations try to group together MIDI messages that correspond to a musical unit
of meaning [121, 116, 282, 220]. The choice of representation significantly influences the
outcomes of learning processes, but no single representation is universally superior;
the optimal representation depends on the specific task at hand [84].

2.3. Computational Music Analysis and Orchestration
In this section we introduce the research field of Computational Music Analysis and
the recent advancements in topics related to orchestration. Computational Music Anal-
ysis (CMA), Computational Musicology (CM), and Music Information Retrieval (MIR)
are related fields of research that aim at extracting information from music through
algorithms. Even though their end goal might be different, they have a wide area of
superposition in the data and methodologies used. There is also a certain overlap of
research goals and interests with “traditional” musicology and music analysis, even
though the disciplines remain separate to this day.

Music Analysis According to Bent’s definition from the Groove Music Dictionary, an
analysis is an attempt to answer the question ‘how does it work?’ [17]. Therefore, it
cannot be just a mere description but it must be an explanation of a piece of music [172].
In the Western classical tradition, music notation plays an important role in the creation
and analysis of music. Computational approaches are frequently also based on scores.
However, a variety of perspectives on the ontology of a piece of music exists and the
identification of a score with the music itself is debatable [246, 43, 172].
We are aware of these problems, but we do not treat them in this thesis. We choose
instead to adopt an analytical approach to music that is based only on the score itself
and that is agnostic to the ontology of a piece of music. This is the proposal of Nattiez,
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which he referred to as the “neutral level”. An analysis should be considered neutral
in the sense that it does not attempt to study the composer’s intentions or the listener’s
cognitive mechanisms and emotions [201]. The concept of neutrality has been heavily
criticized, with the argument that the analyst’s perception and cultural background
cannot be completely disregarded [191]. Despite the persistence of biases in algorithmic
design, some authors have argued that computational methods can facilitate an analysis
that is closet to this concept of neutrality and scientific rigor [8].

Computer Science and Music Sentiment with respect to employing computational
tools to analyze music has been and still is divided [74, 43, 170]. The symbiosis between
computer science and musicology remains relatively uncommon in contemporary aca-
demic circles [22]. This can be partially explained by the skepticism of the traditional
musicological community towards digital humanities [147], and by the fact that com-
puter scientists often lack a musicological background and encounter difficulties in
identifying relevant musicological inquiries to pursue [269]. Mor et al. [193] conclude
their review by urging musicologists to develop more formalized theories of music,
ready to be implemented in a computer program. However, we believe that it is al-
ready feasible for the MIR community to adapt existing theories to the mathematical
formalism required by computational methods. This is the approach we take in this
thesis to formalize and describe orchestral texture.

Goals and challenges of Computational Music Analysis Anagnostopoulou and Buteau
discuss four aims of Computational Music Analysis [8]. One or more of these may mo-
tivate different researchers. The primary goal of CMA is to discover musicologically
interesting results. Second, the formalization of a music task is an important result
in itself. For example, researching encoding languages and representations for music
data is a valid and essential topic of research [269]. Third, the goal could be to assist an
analyst in studies that require intensive computation. A fourth goal is to test computa-
tional methodologies in a complex and unusual abstract domain such as music. This
last goal introduces the risk of a system that has its end in itself but is of no interest
for other researchers [74]. Indeed, a correct computational analysis that can match the
performance of a human expert with no added value is somehow ‘useless’ [172].
Therefore, the challenges of computational music research come from the interdisci-
plinary nature of the subject, with the difficulty to combine the rigor of informatics
with music [8]. The methods employed must address the multirepresentational, mul-
ticultural and multiexperiential nature of music [70]. It is essential that experiments
are designed in a way that allows the deduction of valid conclusions without the use
of extrapolation [251].

Examples of Computational Music Analyses Computational Music Analysis has used
a variety of different methods and approaches. Some studies have tried to adapt ex-
isting reductionist theories such as Schenkerian analysis or Lerdahl and Jackendoff’s
Generative Theory of Tonal Music [154] to a computational framework, using hierar-
chies and generative grammars [171, 227, 1, 104]. Along the same line, other studies
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have focused on structure and hierarchy in music [28, 55] and have used graphs to
represent music [174, 245, 136]. Computation can be used as an interactive supportive
tool in a human-centered study [225]. Recently, approaches based on deep learning
and pretrained models have started to appear [41, 282]. For an extensive list of studies
we refer to [193]. In the next sections we present the main research topics in CMA
related to orchestration.

2.3.1. Models and Algorithms for Voices, Streams, and Layers
The identification and separation of different voices is very relevant to the study of
orchestral music. A seminal study on the problem is that of Cambouropoulos [31], that
starts by surveying the ambiguous uses of the term ’voice’ in different music contexts.
He provides definitions and a few examples to better explain the concepts, and only
later proposes an algorithm to computationally analyze voices according to the given
definitions. Three main meanings are identified (see also the example in Figure 2.6).

• Literally instrumental ’voice’: the sound sequences produced by different musical
sound sources such as individual choir voices or instrumental parts,

• perceptual ’voice’: musical streams in which multiple sound events are grouped
together by perceptual principles (see Section 2.1.2), and

• harmonic ’voice’: voices implied by the voicing of the underlying harmony.

We will avoid using the ambiguous term “voice” alone in this thesis. We are mainly
interested in the second definition that we are going to call stream or layer. In orchestral
music a layer is composed of one or more instrumental parts (first definition), but its
composition is not fixed and may vary in time. We propose a formalization of these
concepts in Section 3.1. We will rarely refer to the third definition.

Two main tasks related to voices have been proposed and studied: voice separation and
melody identification in polyphonic music. The problem of voice separation consists
in dividing the notes of a given score or MIDI file into clusters that correspond to the
perceptual streams. In his 2001 study, Huron identifies six perceptual principles that
are related to good voice-leading: toneness, temporal continuity, minimum masking,
tonal fusion, pitch proximity, and pitch comodulation [124]. Many methods for voice
separation start from a piece for one polyphonic instrument, typically the piano, and
apply rules that try to enforce some of these perceptual principles [135, 217, 218, 166].
For example the contig mapping algorithm segregates the score in blocks in which the
number of simultaneous notes is constant, named contigs, and then links the boundary
notes of each of the voices in the contigs using rules to enforce pitch proximity and
to avoid voice crossings [38]. Others methods are still rooted in perceptual principles
but involve also learning some parameters from a corpus (through genetic algorithms
or machine learning) [96, 99, 60], or are based on other ideas such as comparing infor-
mation values [267]. Other definitions of voices have been also studied, such as the
proto-voice analyzed by Finkensiep et al. [81]. A proto-voice is an harmony-related
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Figure 2.6.: Chaconne from the D Minor Partita for violin solo by Bach, BWV 1004,
measures 33-36. Cambouropoulos [31] presents three possible analysis of
voices: (a) one instrumental voice, (b) two perceptual voices or streams,
and (c) three voices constructed following the implied triadic harmonic
structure. The figure reproduces the same example from the original article.

‘voice’ that is perceived in certain pieces for solo monophonic instruments. The defini-
tion is related to the second and third categories indicated by Cambouropoulos.
The problem of melody identification is very similar, as it consists in separating notes
from a given polyphonic score or MIDI file into two clusters: melody and not melody.
In most of the cases the algorithms are looking for a monophonic line with no simul-
taneous notes. This means for example that they target at identifying only the top
note in a melodic stream with octave doubling, but not every study adopted this ap-
proach. For example Soum-Fontez et al. [248] introduce texture and divide the notes
into melodic and accompaniment layers in a way that allows multiple instruments to
belong to the same layer. In general this task is highly unbalanced, since the base-
line ’skyline algorithm’ achieves already extremely high accuracy results by selecting
the note with highest pitch at every time as the melody [262]. The interesting metric
is the recall, which indicates the performance in the special cases where the melody
is silent or it is not the highest line. Methods have used statistical based classifiers
(random forest, support vector machines, bayesian methods) [226, 85, 127] and neural
networks [162, 244]. Some studies have approached the two related problems of voice
separation and melody identification with one model [117]. The problem of iden-
tifying voices, streams, and layers in orchestral music is a bit different. Rather than
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having to cluster notes from a single polyphonic instrument into multiple streams, we
are interested in grouping together different monophonic parts of a multi-instrumental
score. The obtained clusters should also be able to evolve with time.

2.3.2. Modeling and Analyzing Texture

The studies on voice separation and melody identification presented in the previous sec-
tion can already be considered as examples of computational analysis of music texture.
The identification and separation of voices is a first important element of texture anal-
ysis, but not all of it. The function that the voices serve in a piece, a description of their
internal characteristics, and the relationships between them are part of the constitutive
elements of texture. In Huron’s texture space model (Figure 2.1) these characteristics
contribute to the density and diversity of layers, giving raise to the four emblematic cat-
egories of texture (Homophony, Monophony, Polyphony, and Heterophony) [122]. In
multi-instrumental music, timbral aspects also come into play, and have an important
role in characterizing orchestral texture.

Computational analysis of music texture is still a niche area of research. The semi-
nal work of Nordgren on textural patterns (see Section 2.1.1 for more details) already
identifies certain textural parameters and uses them to compare the orchestration style
of romantic composers. These parameters (instruments number, range, register, and
spacing, the proportion and register of the gaps, doubling concentrations and the
register of concentrations) are quantities that are related to texture, and that can be
computed [203]. Far from being a complete formalization of the concept of texture, his
work opened the road to further research.
Significant efforts have been made to formalize the theory of texture and to facilitate
the application of computational methods, in particular in the Algomus team. Giraud
et al. have proposed a formalization of texture layers in string quartets [89]. They de-
scribe layer roles as melodies or accompaniments and the relations between the parts
forming a layer. Moreover, they release a ground truth annotated corpus and propose
a layer detection algorithm. The work of Soum-Fontez et al. is a step forward from
classical voice separation and melody identification in the direction of texture analy-
sis, studying the detection of melodies and accompaniments with the help of textural
features [248]. Couturier at al. give a systematic description of texture in piano mu-
sic, considering many textural characteristics such as diversity, density, functions, and
internal organization of layers [49]. All those aspects are described with precise fine-
grained annotation on a corpus of Mozart piano sonatas [47]. From the same authors
is also a study that builds a distance metric to compare textures [48].
The concept of music texture has also been used in other studies in symbolic MIR,
which avoid to give a precise characterization or description, but that want to control
it in music generation. Texture then becomes a parameter that encodes, for example,
“everything that is not harmony” and that can be controlled to generate music [271].
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2.3.3. Analyzing Orchestral Texture
To go back to orchestral music, after the work of Nordgren, other researchers have
applied computational methods to analyze orchestral texture. Guigue and de Paiva
Santana propose a method based on the mathematical theory of integer partitions
to analyze orchestral texture and released an implementation of the method for the
OpenMusic10 software [97]. Their implementation allows to analyze both the score and
a concrete result in the form of a recording. Their model proposes a formal strategy
to study the role of orchestration in musical structure and perception and in shaping
musical form. They have successfully applied this methods to Webern’s Variations
Op. 30 [207]. Deep Learning techniques have also been used by Chu and Su to classify
orchestral texture [42]. Their model was trained on the annotated corpus that we
released as part of the research presented in this thesis (more on that will be presented
in Chapter 5).

2.3.4. Analyzing Orchestration
Computer scientists have been studying also other aspects of orchestration with com-
putational methods, including orchestral blends. Antoine et al. experimented with
regression and classification models to predict timbral and perceptual characteristics
of orchestral instrument combinations [12]. This approach aims to estimate instrument
timbre fusions directly from abstract information, bypassing the need for extensive
acoustic and psychoacoustic analysis. In another work, Antoine et al. proposed a
purely score-based system for the identification of orchestral blends [11]. The model
uses computational routines to filter blend candidates based on the principle of onset
synchrony, harmonicity, and parallelism in pitch and dynamics. Darche analyzed tim-
bral augmentation blends with network models [56].
In audio-based MIR, other works related to orchestral music and orchestration tackled
melody extraction from symphonic recordings [23], as well as score-to-audio align-
ment [189] and instrument source separation [188]. Moreover, arbitrary audio spectra
– even actual sounds – may be reconstructed by combining timbres from orchestral
instruments [75].

2.4. Music Generative Models
The field of research in Music and AI has achieved important success during the
years, thanks also to the increasing computational power of modern hardware archi-
tectures [157]. In this section we briefly walk through some historical milestones in
computer music generation (Section 2.4.1), we cover the recent advances in the field
(Section 2.4.2), we discuss the ideas of machine creativity and collaboration between hu-
mans and creative computers (Section 2.4.3), and we conclude by presenting generative
models related to orchestration (Section 2.4.4).
10https://openmusic-project.github.io/
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2.4.1. Algorithmic Music Generation from Procedural Methods to the
AI Era

The idea of generating music with an automatic procedure dates to way back before
computers. An historical example are musical dice games, from the end of the 18th
century. The first example of such games is Kirnberger’s “Der allezeit fertige Menuetten
und Polonaisencomponist” (The Ever-Ready Minuet and Polonaise Composer), pub-
lished in 1757 [111]. Music dice game started to became popular in the subsequent
years. Hedges reports that at least 20 games have been published between 1757 and
1812 [106], among which Mozart’s Musikalisches Würfelspiel. The idea behind dice
games is that a few alternatives are written by the composer for every measure of the
piece, and that players choose between them by chance by throwing dices. The possible
outcomes are not limitless, but several paths between the composed measures exist and
can give raise to very different pieces.
Ada Lovelace, a pioneer of computer programming, is considered the first one to imag-
ine music made by AI in the first half of the 19th century. In a quote from her Note A,
she imagines music as a possible application of computers besides computation.

“Supposing, for instance, that the fundamental relations of pitched sounds in the
science of harmony and of musical composition were susceptible of such expression
and adaptations, the Engine might compose elaborate and scientific pieces of music
of any degree of complexity or extent.”

Her prediction has begun to come true in the 1950s, when computers started being pro-
grammed to make music. The “Illiac Suite for String Quartet”, is often considered the
first piece of music created with an algorithm running on a computer. It was composed
by Lejaren Hiller in 1957 in collaboration with mathematician Leonard Isaacson at the
University of Illinois. The fourth movement, in particular, was generated with a prob-
abilistic Markov chain [113, 114]. In 1963, it is again Hiller, together with Robert Baker,
to develop MUsic Simulator Interpreter for COmpositional Procedures (MUSICOMP).
MUSICOMP is described as probably the fist system for computer-aided composition,
a program that can be used with any compositional logic supplied by the user [112].
Koenig’s Project 1, developed in 1964 to attempt to test the compositional rules of se-
rial music, is an early example of machine-based music generation, contributing to the
advancement of algorithmic composition techniques [109].
The idea of aleatory music (also know as chance music), which includes probability
and randomness in compositions, has been explored by John Cage, Charles Dodge,
Iannis Xenakis, and other avant-garde composers [111]. For example, John Cage’s Atlas
Eclipticalis, was composed by randomly placing translucent paper on a star chart and
tracing the stars as notes [213]. Iannis Xenakis composed Analogique A and B, using
Markov models to determine the order of musical sections [278].
In the 1980s algorithmic composition started to get more attention, with models that
attempted to compose music in different styles and ways. Experiments include Markov
Models, Generative Grammars, Cellular Automata, Genetic Algorithms, Transition
Networks, and Chaos Theory [109]. David Cope began Experiments in Musical Intelli-
gence (EMI) in 1981 to fight a composer’s block. He started by modeling his own style,
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and later moved to the styles of other composers. Some of these compositions became
fairly successful [44, 45].
The late 1980s also marked the first experiments with Neural Networks and AI in Mu-
sic [109]. Lewis in 1988 used a training and creation phase with a gradient descent
approach [156]. Todd proposed in 1988 a model based on a sequential network using
memory with feedback connections [258, 259], and Mozer in 1994 used the CONCERT
network by Elman, which can continue a sequence of notes given the probability over
the possible note candidates [195].
This brief history covered some of the main milestones in algorithmic composition
and does not claim to be complete. For a more exhaustive review of early AI music
composition systems we refer the reader to Fernandez and Vico’s survey [79]. New AI
approaches are considered better for generalization than rule-based approaches and
opened the door to modern advances in the field [109]. In the next section we are
discussing the latest advancements in music generation with Transformers and other
modern deep learning methods.

2.4.2. Machine Learning for Symbolic Music Generation (Transformers
and Other Modern Architectures)

Current state of the art models for music generation are based on Machine Learning
and Deep Neural Networks. These models have been introduced with success in the
field of Music Information Retrieval (MIR) for different tasks related to music analysis
and generation, both in the audio and in the symbolic domain. Classical applications
of these models are solving the tasks of classification and regression. An extensive review
of their usage in a musical context is given by Liebman and Stone [157].
In this section we focus on recent models that aim at generating music in the sym-
bolic domain. The current trend is to take inspiration from successful Deep Learning
models in other domains, such as image and text generation, and to adapt them to
music data. This poses a challenge of music representation, as music notes are placed
on a pitch and on a time axes that are fundamentally different between each other.
The challenge is to represent music as text or as an image in a smart and efficient way
for the model architecture (see Section 2.2). These models offer a unique capability
that is not available with grammar-based models or rule-based systems: the ability to
automatically learn a style from an arbitrary music corpus [25]. However, the use of
original compositions by human artists as training data, often without their explicit
consent, raises significant ethical and legal concerns, particularly regarding the degree
to which these works could be replicated and plagiarized in the outputs generated by
such models [194]. Another concern with Deep Neural Networks is the environmental
impact of their large energy consumption [222].

A first family of models is based on optimization techniques and constraint program-
ming [255, 110]. These models are in a neighboring category to Machine Learning, but
have been included here because of the many compositions that have been created us-
ing these kind of systems [9]. Statistical models have also been used, for their ability to
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mimic a style by reproducing certain statistical properties of a given corpus [103]. Some
researchers have tried to model the multi-level structure of music, combining models
hierarchically. For example, Tsushima et al. [261] proposed a music arrangement model
that combines generative Markov models and probabilistic grammars with a latent tree
structure.
Recurrent Neural Networks (RNN) models, like Long Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU), have been very popular in music generation. These
models treat music like a sequence. A tokenization strategy to represent music is
usually required (Section 2.2). We list here a few examples of remarkable models.
FolkRNN [252] is a model that allows to generate symbolic music in abc notation in the
style of Irish folk songs. Oore et al. [204] proposed a model that can generate perfor-
mance MIDI with expression, mimicking MIDI recordings of a human performance.
DeepBach [101] combines a LSTM with a pseudo-Gibbs sampling method to generate
chorales. Jaques et al. [125] proposed to use a LSTM in combination with a reward
mechanism to train a generative model in a reinforcement learning fashion.
The adversarial training paradigm has also been employed to generate music. The idea
behind Generative Adversarial Networks (GAN) is to pair a generator network with a
discriminator network. The two models are trained at the same time: the discriminator
is trained to distinguish training data from content generated by the generator, and
the generator is trained to maximize the probability that the discriminator will make a
mistake [92]. The GAN training protocol has been used for music generation in com-
bination with Convolutional Neural Networks (CNN) [279, 68, 69], with Variational
Autoencoders (VAE) [264], and more recently with Transformers [196, 128].
VAEs are another wide category of models that have been employed to generate music.
When training VAEs the input is fed to an encoder network that maps it to a lower
dimensional latent vector. Noise is then added to it, and the noisy vector is fed as
input to a decoder network that maps to the output. The whole network is trained so
that the output is the reconstruction of the input from the latent space [140]. With this
technique one can affect the output of the generation by modifying the latent vector,
allowing for some control to the generation [27, 243, 271, 270, 284]. Recently Wang et
al. [273] have proposed a complex VAE model with multiple encoders and decoders
that can exploit multi-modal training using both audio and symbolic data to generate
symbolic music.
The model that has had the biggest impact in the last years is the Transformer. First in-
troduced by Vaswani et al. [265], the original Transformer is a encoder decoder network
based on self-attention. As opposed to previous sequence models like RNNs, the Trans-
former processes and encodes input data in parallel, rather than sequentially, allowing
it to capture long-range dependencies more effectively. Encouraged by the substantial
impact of the transformer in Natural Language Processing (NLP), Huang et al. [119]
have proposed the music Transformer. The extraordinary results of this model have in-
spired many researchers in proposing alternative Transformer models for single-track
and multi-track music in a wide variety of styles, adopting different tokenization, data
representation and embedding strategies. Some of them are bound to generating one
or a specific number of tracks because of their training method [65, 73, 116] while some
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others adopt strategies to overcome the problem and generate music with any number
of tracks [205, 158, 66, 215]. Some models try to incorporate music ideas in the encoding
like phrases and themes [200, 280, 242]. And some authors proposed Transformers to
solve different tasks than free music generation, like infilling [102, 167], accompani-
ment generation [220], style-controlled generation [40, 237], or expressive performance
generation [257, 153].
The use of pretrained models, like the Bidirectional Encoder Representations from
Transformers (BERT) model [63] and the Generative Pretrained Transformer (GPT) [216],
has also been experimented. The idea of transfer learning and pretraining is to exploit
the knowledge learned from training a machine learning model on one generic task
and apply it to a different but related downstream task. For the downstream task,
the learning process does not start from scratch, but the model is initialized with pre-
trained weights that come from the first model. Those already encode features that
are hopefully useful for the downstream task as well [208, 274, 256]. This approach is
particularly effective when there is limited labeled data since unsupervised pretraining
can be used. For example, BERT [63] is pretrained for the tasks of masked language
modeling and next sentence prediction. For the first task, a certain proportion of tokens
in the sequence is replaced by a [MASK] token, and the model is trained to reconstruct
the original token. For the second task, the model needs to predict if two spans of text
that are presented to it are following each other in the original corpus or not. GPT [216]
is instead pretrained autoregressively for next token prediction. The advantages of
these architectures and training strategies are that the same pretrained model can be
used for autoregressive generation, inpainting [34], and for other analysis tasks like
classification [272]. Moreover the use of a pretrained model significantly reduces the
amount of task specific labeled data that is required for the downstream task for which
the model is finetuned.
Combining language models and music generation models, MuseCoco is a model that
is now capable of directly generating music from a text prompt [161].
A recent alternative to Transformers is the Diffusion model. Its adoption is motivated
by the success in generating high quality images. It uses an image-like representation
for music, and it has been tested for single-track and multitrack generation [190, 186].

Four main challenges of music generation were identified by Briot and Pachet [25]: con-
trol, structure, creativity, and interactivity. They are still relevant today, also because
some of them are difficult to evaluate and there is no agreement between researchers
on how to measure them. For creativity in particular, its definition and evaluation is a
complex topic. No statistical metric can be directly used in this regard. Herremans et
al. [111] mention that music generation systems should find the right balance between
similarity and novelty. In the next section (Section 2.4.3) we expand on this problem
by presenting more ideas and results on human creativity, machine creativity, and co-
creativity between humans and computers. Narrative and long-term structure are also
identified as the most overarching challenges [111].
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2.4.3. Computational Creativity and Music Generation
The spread of systems for AI-based music generation studies has contributed to drive
a growing interest in machine creativity [185]. Many questions emerge regarding
the definition, evaluation, and uses of creative machines [132, 131]. Esling and Devis
analyze the creativity of AI with the lens of social science studies and highlight the
intrinsic limits of AI for self-contained creativity. They suggest a move towards co-
creativity in which generative AI algorithms are used as creativity-enhancing tools [77].
This proposal finds its place in Lubart’s classifications of modes of human-machine
interaction in a co-creative process [163]. Among them, the computer as a colleague mode
implies a direct involvement of algorithms in the creation of the final output, rather than
a mere assisting role (algorithm as a tool) for the creator. Similar categories are found
in Kantosalo and Jordanous’s description of the roles of AI in creative processes. They
divide them in the categories of co-creative colleague and creativity support tool [134].
Some studies focused on human creativity in music [221], and on the way it can be
enhanced with Machine Learning (ML) models [173] through modes of interaction
between the artist and the model [88, 13]. Difficulties emerge in the evaluation of the
creativity of such systems [6]. Louie et al. have also highlighted that a good interface for
steering AI has an impact on the ability of users to express musical ideas and “own” the
resulting creation [159]. Co-creative systems in music generation [79, 111, 25, 26, 126]
can be divided into two categories: for live performance improvisation [13, 80, 209, 266],
and for composition and production [16, 3, 237, 231]. The AI song contest, a competition
specifically focused on co-creation in songwriting, inspired different uses of AI and
discussions on them [118]. Some members of Algomus have been part of such a
team, involving a composer right from the beginning of the system design, resulting in
personalized AI models [61].

2.4.4. Generative Tasks Related to Orchestration
After having introduced music generation and co-creativity in general, we now move
back to the orchestration problem and present a literature review on generative and co-
creative models for orchestration. Crestel identifies four orchestral translation problems
(Figure 2.7), two in the symbolic domain (projective orchestration and piano reduction),
and two between the symbolic and the audio domain (transcription and orchestral ren-
dering) [50]. In this thesis we expand on the symbolic domain side of this map (see
Chapter 4, where we reformulate orchestration tasks in light of our modeling).
Piano reduction is the reverse operation of orchestration, it consists in rearranging an
orchestral piece for piano solo. The piano introduces some limitations, due to the fact
that it must be played by one musician with only two hands, rather than the many
players in an orchestra. The timbre possibilities are also limited to the sounds the
piano can make. Some computational studies have tackled this task, with different
approaches to identify the essential elements of the music to keep in a piano reduc-
tion [120, 254, 199, 115].
Projective orchestration, as named by Crestel [50], consists in the transformation of a
piano score into an orchestral score. After defining this task, Crestel proposes Live
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Figure 2.7.: Crestel identifies four orchestral translation problems: projective orchestra-
tion, piano reduction, transcription, and orchestral rendering [50].

Orchestral Piano (LOP), the first system to perform projective orchestration. It is a
model based on the Restricted Boltzmann Machine (RBM) and it can assign orchestral
sounds to notes played in real time on a digital piano, therefore modeling “live” or-
chestration of piano music [51]. This model however does not focus on the playability
of the generated score by orchestral instruments. Before this, we cite the experiment of
Handelman et al. in which z-chains are used to encode the information about music,
and perform the instrumentation of an existing composition [105]. Others have dealt
with instrumentation by learning to recognize the instrument for every note of music in
which all the MIDI tracks had been mixed together [67]. Similarly, Kamada et al. have
used a pretrained model to classify the instrument of notes for which the instrument
information had been masked [133]. Nabeoka et al. proposed a system for wind band
orchestration that uses a U-Net encoder-decoder model with a matrix-based represen-
tation [198]. The system can effectively generate scores for wind band, starting from a
piano version of a piece. Q&A by Zhao et al. [284] is a multi-purpose multitrack model
based on VAEs that can perform track separation, rearrangement, and orchestration of
pop music.
Transcription here refers to those tasks that try to construct an orchestral score start-
ing from an audio signal. It does not only include those systems that want to do
an actual transcription of an orchestra playing, but also systems that aim at support-
ing composers in recreating existing sounds through blends of orchestral instruments.
Several approaches have been used in this context, including spectral analysis, linear
algebra methods, and genetic algorithms [214, 33, 229, 32, 75, 169, 2, 30, 29]. The IR-
CAM institute in Paris has been very active in this field of research, developing a range
of “Audio-targeted Orchestration” software that are part of the Orchid* family. More
recently Cella proposed Orchidea [36, 37], a model for dynamic audio-targeted orches-
tration, in which the target sound is described as evolving in time.
The last transformation mentioned by Crestel is orchestral rendering, which is not re-
ally related to orchestration. It concerns the process of simulating realistic orchestral
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sounds with computers11.

Some orchestration-related models do not fit in any of the four translation problems, but
will find their spot in the classification we give in Chapter 3. Miranda et al. proposed
a system that generates voicing and orchestrations of chords trying to match verbal
timbre descriptors [187]. Close to orchestration is also the problem of arrangement.
Pachet used several algorithms to produce re-arrangements of Beethoven’s Ode to Joy
in different styles [206]. McCloskey et al. have proposed an algorithm for automatic
arrangement [179]. Zhao et al. have proposed AccoMontage-3 [283], a model for lead
sheet arrangement. Recently, Le et al. have proposed METEOR, a model for orchestral
music rearrangement, or style transfer, with a focus on melody fidelity [150].

Finally some have attempted to directly model orchestral music composition. Sym-
phonyNet is a deep learning model based on the linear Transformer architecture, ca-
pable of generating orchestral music either unconstrained (autoregressive), or weakly-
constrained by a chord sequence [158]. It uses both structural and note-related tokens,
together with a form of Byte Pair Encoding [86, 240]. We will try to extend their
tokenization strategy to include texture information in Chapter 8. The Beethoven X ex-
periment is an AI-assisted composition of orchestral music that aimed to be a plausible
Beethoven symphony, obtained by the collaboration between the composer Werzowa,
musicologists, and computational methods including generative Machine Learning.
Several tasks have been modeled in this experiment (with many steps and human co-
creation). No code nor data are publicly available, but their co-creative methodology
is interesting, divided into continuation (expanding melodic lines and themes, from the
original melodic material from Beethoven’s own sketches), harmonization (composition
of accompaniments parts for the melodic ideas, including, for example, homophony,
counterpoint, and fugue), transition (orchestral/polyphonic inpainting, to connect dif-
ferent ideas), and orchestration (organizing across the available instruments and instru-
mental families of the orchestra) [95].

In light of our formalization of orchestration, we will propose a reclassification of both
analytical and generative MIR tasks related to orchestration that have been presented
in this chapter in Section 4.1.

2.5. Orchestral Music Corpora

Studies have focused on the perception of orchestral music (Section 2.1.2), on the
computational analysis of orchestration (Section 2.3.2), and on automated orchestral
music generation (Section 2.4.4). Some of these studies have built and released open
corpora with orchestral scores and, sometimes, audio recordings to help research on

11Several commercial software offer an orchestra simulator, with different levels of realism and control
of the results. These include Sibelius, Finale, Dorico, MuseScore, Logic Pro, OrchSim, and many more.
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orchestration techniques and perception. These corpora are an invaluable resource to
help research in orchestration techniques, automation, and perception.

OrchARD The taxonomy proposed by McAdams et al. describes perceptual phenom-
ena arising from orchestral music, relying on auditory grouping mechanisms linked to
orchestration techniques (refer to Section 2.1.2 and to the TOGE article [178]). The Or-
chestration Analysis & Research Database (OrchARD, as of 2024 not openly released)12

contains annotations of the phenomena described in the TOGE in certain excerpts of
orchestral music. These range from the low-level instrumental blends up to high-level
auditory effects such as those of Segmental Grouping. The database contains anno-
tations, scores (mostly in pdf format and some in MusicXML), and recordings of the
excerpts. The annotations only target a few instruments at specific parts of the score,
when the interesting phenomena occurs, and are not systematic on every measure of
the score.

POD and SOD Crestel et al. published the Projective Orchestral Database (POD) gath-
ering aligned MIDI files for both piano and orchestral versions of 196 pieces [52]. The
dataset was constructed to research systems for ‘projective orchestration’, which is the
name the authors give to the generation of orchestral scores starting from piano scores,
much like how traditional orchestration is taught in conservatory and music school
classes. The Symbolic Orchestration Dataset (SOD), by the same authors, extends the
POD with a collection of MIDI and MusicXML files of orchestral scores only (without
aligned piano versions).

SymphonyNet Dataset Liu et al. [158] proposed a Transformer model to generate
multi-track orchestral music (more details in Section 2.4.4 and Chapter 8). Together
with their generative system, they release the dataset on which it has been trained,
composed of 46,359 polyphonic MIDI files. A portion of them (728 files) consists of
western classical symphonic works, while the majority are in other styles, like pop and
video game music.

Wagner Ring Dataset The Wagner Ring Dataset (WRD) is part of a long-term interdis-
ciplinary research project conducted by research groups in Erlangen and Saarbrücken,
Germany [275]. It is a multi-modal and multi-version annotated dataset built on Wag-
ner’s “Ring” cycle, comprising four operas organized into eleven acts and 21939 mea-
sures. The WRD provides score representations in various modalities and 16 recorded
performances (3 publicly available). The WRD aims to support and advance research in
music processing, Music Information Retrieval (MIR), and computational musicology.
It has been successfully used to train a cross-version representation learning model for
orchestral music (in the audio domain) [144].

12https://orchard.actor-project.org/, access can be granted by request to interested researchers.
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Other sources of symphonic scores: IMSLP, MuseScore, and KernScores There ex-
ist many platforms that allow sharing and redistributing digital scores and MIDI files
with a public domain license. Among them we mention the International Music Score
Library Project (IMSLP)13. It mostly contains pdf scans of professional scores that have
entered the public domain because of the elapsed time since the death of the author
and the publication.
MuseScore14 is an open source music notation software and a platform to share scores
made with the software. An independent community of notation amateur is very active
in transcribing and uploading scores from the western classical repertoire, and some
academic-coordinated collective efforts have produced very high quality corpora of
transcriptions [94].
KernScores15 is an online library of scores in the **kern file format, native to the Hum-
drum Toolkit for Music Research [236]. The website also provides automatic transla-
tions into several other popular data formats for digital musical scores like MIDI. The
collection has been created to assist projects dealing with the computational analysis
of musical scores.
The scores in our corpus (see Chapter 5) have been originally collected from MuseScore
and KernScores.

13https://imslp.org/
14https://musescore.com/
15https://kern.humdrum.org/
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Part I.

Modeling Orchestration





3. Abstract Models of Orchestration
Through history, there is no singular “standard” orchestra as music featuring multi-
ple instruments evolves in accordance with the style and the expectations of each era.
Orchestras have evolved during time in the number of instruments involved, their char-
acteristics, and their similarities and heterogeneity in sound and timbral properties. In
the baroque era, orchestras were composed of a few strings, optionally woodwinds,
and natural brass instruments. In the romantic and post-romantic period, instead, we
have very huge orchestras with many instruments and players. Richard Wagner, for
example, employs around 90 musicians for his Opera cycle Der Ring des Nibelungen
(WWV 86). Big orchestras reach their peak with Berlioz, and 20th-century orchestras
involve new instruments such as the english horn and various percussions [4]. In the
contemporary period, there is a renewed interest for chamber music and composers
prefer smaller ensembles in which they can explore instruments’ extended techniques
and new combinations of their timbres [10].
From this, the necessity to take a snapshot of a specific time, the end of the 18th-century,
with a mature “classical orchestra” [249], with great influence on later periods. We focus
on a selection of 24 first movements of symphonies in the western “classical style” [230]
composed between 1779 and 1824 by the masters of the “first Viennese school” (Haydn,
Mozart, and Beethoven). These symphonies usually employ orchestras consisting of
strings, woodwinds in pairs, natural horns and trumpets [247], and a pair of tim-
pani. The first movement typically follows the sonata form [39, 108], which holds true
across all the 24movements considered, although some of them exhibit unconventional
structures1. The interplay between primary and secondary theme sections, along with
the development, offers composers opportunities to experiment with orchestral tex-
tures. Unlike earlier polyphonic music, which predominantly focused on contrapuntal
textures, classical symphonies by Haydn and Mozart exhibit a homophonic texture,
where melodic lines are supported by harmonies constructed from chords [107, p. 223].
Beethoven expanded the ensembles and pursued greater emotional expression through
his compositional techniques, incorporating frequent and broader modulations [107,
p. 227].

Orchestral music writing is an art whose “secrets” are traditionally transmitted through
examples, practice and mentoring from one master to their students. As seen in Chap-
ters 1 and 2, several books and treaties discuss orchestration techniques, but we are still
far from a formalized theory of Orchestration. In this chapter we aim at expanding the
understanding of such craft, by proposing three models of orchestration. We introduce

1In the Mozart 32nd symphony, a kind of sonata form is split among the first and the third movement [39,
p. 93-94].
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a taxonomy that uses both a perceptive and a music theoretical approach to describe
how orchestral layers with different roles create orchestral texture in classical and early-
romantic symphonies (Section 3.1). We then introduce the layer score (Section 3.2), an
object with which we model an abstract composition with no instrumentation details.
Finally, we present the orchestration plan (Section 3.3), through which all layers in a
composition can be mapped to an instrumentation. The first object has been introduced
in our DLfM publication [149], and the last two objects in our EvoMUSART publica-
tion [165], but here we present a more formal and unified model of these objects and
their constituent parts.

3.1. A Taxonomy to Describe Orchestral Layering in
Classical and Early-Romantic Symphonies

In this section we focus on describing the annotation syntax and process. We start by
describing how auditory grouping principles contribute to the formation of orchestral
layers (Section 3.1.1), and we formalize these ideas with mathematical language (Sec-
tion 3.1.2). We then describe which roles layers can take in the texture, and the relations
between instruments inside layers and between layers (Section 3.1.3). After, we present
a few more mathematical definitions of properties of orchestral layers, and an attempt
to define the orchestral texture of a measure (Section 3.1.4). We conclude the section by
discussing similarities and differences between this model and the concept of orchestral
blend from the TOGE [178] (Section 3.1.5).

3.1.1. Grouping Instruments into Layers
Western music frequently employs a homophonic texture, where the musical material
can be divided into melody and accompaniment [143]. Figure 3.1 presents an excerpt
from Symphony No. 41 by Mozart, where it can be said that the violins are playing
a melody while the other instruments provide the accompaniment. However, it is
reductive to talk about orchestral music only in terms of melody and accompaniment,
as those may appear in various complex forms. Melodies and accompaniments can
have different textures thanks to the involvement of a large group of instruments, and
several passages might not even present a clearly “melodic” line. With our taxonomy
we try to be more precise in describing also those cases. Orchestral texture can then
be considered to be the assembly and organization of instrumental sounds into more
intricate structures.
Based on studies in music perception, such as those presented in Section 2.1.2, we
decide to divide the orchestra into layers, and we do so systematically, at every measure
of the composition. In the Mozart example reported in Figure 3.1, the listener may
perceive four layers following concurrent and sequential grouping [178]: the two violin
sections (blended), the violas and contrabasses (also blended), the cellos, then the oboe.
A layer might be formed by one, two, or more instruments whose sounds are blending
together, and that are playing “the same part” from the music theoretical point of
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year symphony (first movement) key bars layers av. len. av. parts

Mozart

1779 Symph. 32, K. 318 G Major 274 218 3.53 2.73
1779 Symph. 33, K. 319 B♭ Major 370 248 3.86 2.17
1780 Symph. 34, K. 338 C Major 264 269 3.11 2.47
1782 Symph. 35, K. 385, Haffner D Major 204 170 3.95 2.56

1756 – 1791 1783 Symph. 36, K. 425, Linz C Major 287 280 2.70 2.76
1786 Symph. 38, K. 504, Prague D Major 302 402 2.42 2.35
1788 Symph. 39, K. 543 E♭ Major 309 431 2.06 2.73
1788 Symph. 40, K. 550, Great G minor G minor 299 278 3.33 2.50
1788 Symph. 41, K. 551, Jupiter C Major 313 360 2.71 2.60 (Figure 3.1)

Haydn

1793 Symph. 99 E♭ Major 202 266 2.73 2.37
1793-94 Symph. 100, Military G Major 289 250 3.16 2.66
1793-94 Symph. 101, The Clock D Major 351 302 3.14 2.62

1732 – 1809 1794 Symph. 102 B♭ Major 311 262 3.18 2.76 (Figure 3.9)
1795 Symph. 103, Drumroll E♭ Major 229 191 3.09 2.82 (Figure 3.11)
1795 Symph. 104, London D Major 294 250 3.20 2.69

Beethoven

1800 Symph. 1, op. 21 C Major 297 344 2.19 3.01
1803 Symph. 2, op. 36 D Major 360 411 2.59 2.71
1805 Symph. 3, op. 55, Eroica E♭ Major 691 610 3.44 2.41
1807 Symph. 4, op. 60 B♭ Major 498 353 3.46 2.85 (Figure 3.8)

1770 – 1829 1808 Symph. 5, op. 67 C minor 502 368 3.22 2.89 (Figure 3.10)
1808 Symph. 6, op. 68, Pastoral F Major 512 284 4.99 2.33
1813 Symph. 7, op. 92 A Major 450 434 3.05 2.72
1814 Symph. 8, op. 93 F Major 373 357 3.00 2.83
1824 Symph. 9, op. 125 D minor 547 603 3.29 2.54 (Figure 3.16)

8528 7941 3.14 2.63

Table 3.1.: The corpus of annotations contains 24 first movements of Haydn, Mozart,
and Beethoven symphonies [149]. The last three columns give the number
of annotated layers, their average length (in bars), and the average number
of instrumental parts per layer.

view. In general, more layers can appear simultaneously in the same measure, but one
instrument2 can appear in at most one layer at a time3. Dividing the orchestra into
layers can then be taught as an equivalent operation to the partition of a set. In the
example of Figure 3.1 the ensemble

{Ob, Vln1, Vln2, Vla, Vc, Cb} ,

composed of oboes, violin 1, violin 2, viola, cello and contrabass, is a set of instruments,
that is partitioned as

{{Ob} , {Vln1, Vln2} , {Vla, Cb} , {Vc}} .

In measures 101 and 102, the oboe is silent, and it starts to play at measure 103. By
simply partitioning the ensemble, we cannot distinguish between silent and playing
layers. Clearly, partitioning the ensemble is not enough to describe an orchestral
texture. We propose a less naive way to define layers, that also allows to describe
several of their attributes, like the role among the simultaneous layers in the whole
orchestra (Section 3.1.3.1) and the relation of the instruments inside a layer and possibly
between layers (3.1.3.2).

2When we mention one instrument, we are actually referring to one instrumental section. Violin 1 is
“one instrument”, even though several musicians are playing that part.

3The only exception to this rule is the divisi indication, which splits one instrument of the orchestra in
two. In Section 3.1.2 we also discuss this particular case.
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[101-105] (mel-u:Vln1.Vln2) / [103-105] (harm:Ob)
(rhythm::arpeggio:Vc) /
(rhythm+harm::sparse-u:Vla.Cb)

Figure 3.1.: Allegro Vivace in Symphony No. 41 Jupiter by Mozart, measures 101-105,
from edition [100]. Four layers can be heard: one melodic (violins –
Vln1/Vln2), one bringing some rhythm (cellos – Vc), another one with sparse
elements (violas and contrabasses – Vla/Cb), and, two measures later, an
harmonic layer (oboe – Ob). In the layers containing several instruments,
they are here in unison or octave doubling (-u).
 http://algomus.fr/fm/mozart41-101.mp3

3.1.2. Formal Formulation of the Layers’ Taxonomy
In this section we try to give formal definitions of the concepts of orchestral layers and
annotations4. Music is made of notes, and notes can be described by their temporal
position, their pitch, and their duration.

Definition 3.1 (Music Note). Let𝒯 = [0, tend] ⊂ Rbe the time,𝒫 = {C-1, C♯-1, D-1, . . . }
be the pitches, and𝒟 = Q be fractions representing the durations of notes. Then a note
can be described as a point

(t,p,d) ∈ 𝒯 × 𝒫 ×𝒟.

When we place notes in an orchestral score, we have another dimension, the instrument.
We introduce then the following.

Definition 3.2 (Ensemble). An orchestral ensemble is a set ℰ of distinct instrumental
parts.

4The actual syntax used for the annotations, is detailed in Appendix A, and allows to describe at a whole
the orchestral texture, including layers identifiers and concise expressions describing instruments
joining a layer at a later measure, or layers continuing previous layers.
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ℰ = {Fl1, Fl2, Ob1, Ob2, Cl1, Cl2, Fg1, Fg2,
Hrn1, Hrn2, Trp1, Trp2,
Timp,
Vln1, Vln2, Vla, Vc, Cb}

is a typical ensemble for a classical symphony, with two distinct parts for woodwinds
(flutes, oboes, clarinets, and bassoons) and brass (natural horns and trumpets), one
timpani part, and string parts (violins 1 and 2, violas, cellos and contrabasses).
With distinct instrument parts, we mean parts that are autonomous, even if the instru-
ment is the same. For example, violin 1 and violin 2 both consist of violin players, but
are two distinct parts. Distinct instrument parts roughly coincide with the staves of the
conductor score, with some exceptions. Indeed, some instruments, like the piano and
the harp, have their part written on multiple staves. Moreover, many scores display
distinct parts written on the same staff with divisi indication. For example, it is typical
to have two distinct flute parts in classical symphonies, despite the fact that they are
normally written on the same staff and that they are occasionally playing in unison. It
is also typical to divide one string section in two in some punctual moments of the score
(for example the first violin or the cello parts can be divided)5. In that case one musician
per desk would read the top line and one the bottom line. At times, the two parts might
belong to different orchestral layers (for example we could find the viola divided in two
parts of which the highest one is doubling the violins and the lowest one the basses). In
more modern pieces, this division could go even further, splitting an instrument section
into 3, 4, or more subsections. In any case we can consider these subsections to be the
“individual instruments”, and the collective name of the instrument to be a virtual alias
to indicate the set that collects them all. For example, the viola (Vla) could be divided
into two parts in certain measures of a symphony. Then Vla1 and Vla2 would be the in-
dividual instruments, which can appear only in a layer at a time, and Vla = {Vla1, Vla2}
would be a collective name that is used when Vla1 and Vla2 are part of the same layer.
All the reasoning that follows can be easily extended to this case using this arrangement.

Now we have all the objects we need to define an orchestral score, as a set of orchestral
notes.

Definition 3.3 (Orchestral Note and Orchestral Score). Let 𝒯 = [0, tend] ⊂ R be the
time, 𝒫 = {C-1, C♯-1, D-1, . . . } be the pitches, 𝒟 = Q be fractions representing the
durations of notes, and let ℰ be an ensemble of instruments. An orchestral note is
defined by (t,p,d, ins) ∈ 𝒯 × 𝒫 × 𝒟 × ℰ. Then an orchestral score O is a set of
orchestral notes, that is a subset O ⊂ 𝒯 × 𝒫 ×𝒟 × ℰ.

There are other objects and other properties of notes that can be encoded in a score, such
as dynamics (f , mp, ppp, . . . ) and articulations (pizz., staccato, . . . ). We are ignoring
those here, but they could be included. Basically here we are projecting the notes into

5Each annotation is bond to a score, so the annotation syntax (Appendix A) adopts a specific strategy
for divisi and distinct parts that are on the same staff.
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the 4-dimensional subspace 𝒯 × 𝒫 ×𝒟 × ℰ.
According to a time signature (4

4 , 𝒞 , 6
8 ,. . . ), that might even change during a piece,

time is organized into measures (Figure 3.2). Gotham et al. [93] discuss different music
numbering conventions and propose a strategy to overcome their discrepancies. We
use measures a lot in the thesis, but we will not go into the details of how to divide
time into measures. We will assume that a partition of time into measures exists, and
that it is correct.

Definition 3.4 (Measures). Given the time 𝒯 = [0, tend], a partition of 𝒯 into intervals
that respects certain properties, is a set of measuresℳ = {m1,m2, . . . ,mN} ,N ∈ N.

Figure 3.2.: Measuresℳ = {m1,m2, . . . ,mN} are intervals that partition the time 𝒯 .

The choice of using measures as the unit of time for texture annotations is not casual.
Orchestral texture is a high-level musical feature that cannot be understood note-by-
note. A measure of music is an appropriate time window that is usually wide enough to
analyze texture but not excessively wide, which would result in many texture changes
inside the same window (as it would be for a formal section). Still the choice remains an
approximation; there are many instances (for example in the presence of an anacrusis)
in which a texture change does not coincide with the boundary of a measure. However,
the problem of precisely identifying texture boundaries is complicated to define and
formalize, since different layers beginnings might be shifted in time. Analyzing texture
at measure level offers a better overview of the texture evolution in a piece. For every
measure we decide to annotate the “prevalent” texture, i.e. the one that explains the
largest part of the measure. This solution can be a limitation and it can sometimes
prevent a precise description of the phenomena we want to study, but in most of the
cases it proved to be a good approximation to describe texture.
We would be tempted to define layers as a partition of the ensemble at every measure,
but we have seen at the end of the previous section that this would raise some problems
with silent instruments. Ideally, instruments should not belong to any layer in the
measures in which they are silent. In the example presented in Figure 3.3 the sparse
layer spans several measures and its composition in terms of instrumental parts changes.
At the beginning it is played by all instrumental parts except for the violin 1, and after
four measures brass instruments and timpani stop playing. Then, rather then a subset
of the ensemble ℰ, an orchestral layer is better defined as a subset of the cartesian
product between measures and ensembleℳ×ℰ.

Definition 3.5 (Orchestral Layer). Let ℰ be an ensemble, andℳ = {m1,m2, . . . ,mN},
where N ∈ N, be a set of measures. Then, an orchestral layer ℓ is

ℓ ⊂ ℳ ×ℰ,
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[49-54] (rhythm-u:Vln1)
[49-52] (rhythm+harm::sparse-h:Fl1.Fl2.Ob1.Ob2.Fg1.Fg2.Hrn1.Hrn2.Trp1.Trp2.Timp.Vln2.Vla.Vc.Cb)
[53-54] (rhythm+harm::sparse-h:Fl1.Fl2.Ob1.Ob2.Fg1.Fg2.Vln2.Vla.Vc.Cb)

Figure 3.3.: Adagio - Allegro in Symphony No. 100 Military by Haydn, measures 49-54.
Two layers can be heard: a rhythmic layer (yellow, light) played by violin
1 (Vln1), and a sparse layer (blue, dark) played by all other instruments
until measure 52, and by woodwinds and strings from measure 53. It is an
example of a layer with changing instrumentation, since brass instruments
and timpani stop playing after four measures.
 http://algomus.fr/fm/haydn100-49.mp3
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whose elements are couples of measures and instrumental parts. A layer can be iden-
tified with a layer identifier id ∈ ID.

An example of layer is ℓrhythm+harm::sparse-h in Figure 3.36, where horns (Hrn1, Hrn2)
and trumpets (Trp1, Trp2) take part only in measures 49 to 52, and other instruments
continue up to measure 54. Notice that both ℳ and ℰ are discrete sets, but ℳ is
ordered and ℰ is not. The identifier can in principle be anything, for example a name:

id ∈ {mel1, rtm1, mel2, harm, . . .}.

However, for convenience, we will sometimes assume that ID = N and that we have
n ∈ N layers ℓ1, ..., ℓn.
If we want to know the instrumentation of a layer ℓ ∈ ℳ × ℰ at a certain measure m,
we fix a certain measure m ∈ ℳ and take all the instruments i ∈ ℰ such that (m, i) ∈ ℓ.
This set is called an m-section of the layer ℓ.

Definition 3.6 (Layer Instrumentation at Measurem). The layer instrumentation for any
given layer ℓ at measure m, is the set of all the instruments i ∈ ℰ such that (m, i) ∈ ℓ,
and it is called the m-section of the set ℓ.

ℓim ⊂ ℰ

Figure 3.4.: Layer Instrumentation at measure m2 and m3 of layer ℓ1. Layer ℓ1 (points
surrounded by the curved bold line) has, at measure m2, an m2-section
including violin 2 and viola. At measure m3 the m3-section of ℓ1 includes
violin 1 and violin 2 and viola.

In Figure 3.4 we see a schematized representation of a layer. At measure 2 (blue) the
instrumentation is Vln2 and Vla, at measure 3 (red) it is Vln1, Vln2 and Vla.
No instrument can belong to more than one layer simultaneously. We impose this with
the following validity condition.

6The string rhythm+harm::sparse-h used to identify this layer has a meaning: it is a layer with
a mixed rhythmic (rhythm) and harmonic (harm) role, that we call sparse. Moreover the parts
composing it are in homorythmic relation (h). Layer roles and relations will be explained in detail in
Section 3.1.3.
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Definition 3.7 (Valid Collection of Orchestral Layers). A collection of orchestral layers
ℒ = {ℓ1, . . . , ℓn}, where n ∈ N, is valid if and only if all layers are pairwise disjoint, i.e.

ℓi ∩ ℓj = ∅, ∀i, j ∈ 1, . . . ,n, i ≠ j.

When performing annotations, we must group instruments and output a valid collec-
tion of layers (Figure 3.5). Notice that the concept of validity does not directly rely
on simultaneity, but rather on the fact that the sets in ℳ × ℰ do not intersect. The

Figure 3.5.: A collection of layers is valid when they do not have any points in common.

annotation syntax (Appendix A) fully describes layers, even when the instrumentation
is evolving, or when some instruments are divided (divisi). It describes the composition
of layers through the instrumentation at measure m from Definition 3.6. In the scores
shown in this chapter we report the composition of the layers with a list of instruments7.

3.1.3. Layer Descriptions: Roles and Relations
Layers can be described through a function that assigns a description to every layer.

Definition 3.8 (Layer Description Function). Let ℒ = {ℓi}i∈ID be a valid collection of
layers. Given a set of layer descriptions D, a layer description function is a function

δ :ℒ → D,
ℓi ↦→ d,

that assigns to every layer ℓi, where i ∈ ID, a description d ∈ D.

In the definition above, we intentionally remained abstract, to allow the choice of
different sets of descriptions D (Figure 3.6). In the following we specify the description
of layer roles, relations inside layers, and relations between layers.

7For example, in Figure 3.3 the sparse layer rhythm+harm::sparse-h at measure 54 is composed of
flutes 1 and 2, oboes 1 and 2, bassoons 1 and 2, violin 2, viola, cello, and contrabass, as indicated by
Fl1.Fl2.Ob1.Ob2.Fg1.Fg2.Vln2.Vla.Vc.Cb
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Figure 3.6.: Layer description: all layers ℓi ∈ ℒ can be mapped to a description di ∈ D.

3.1.3.1. Layer Roles

Benward and Saker describe music texture by establishing different types of textural
elements. These are melodies (primary, secondary, or in parallel motion) and supports
(static, harmonic / rhythmic or both) [18]. Grounded in this classification, and on
other concepts commonly discussed in orchestration literature, we propose to assign
zero, one, or several roles to each identified layer. The basic roles are Melody, Rhythmic
Accompaniment, and Sustained Harmony, and can be further specialized into sub-roles
that give a qualitative description of their content.
Formally, given a set of roles ℛ, such as ℛ = {mel, rhythm, harm}, we can chose its power
set 2ℛ as the set of descriptions. Then, the description function

δroles :ℒ → 2ℛ,
ℓi ↦→ R,

assigns to every layer ℓi, where i ∈ ID, a set of layer roles R ⊆ ℛ. With this description,
a layer can have zero, one, or multiple roles, allowing mixed roles (Figure 3.7).

Figure 3.7.: Layer description: roles. All layers can be mapped to a set of layer roles R ⊆
ℛ = {mel, rhythm, harm}. In the example δroles(ℓ1) = {mel, rhythm}, δroles(ℓ2) =
{rhythm, harm}, and δroles(ℓ3) = {harm}.

In the following, we present each role and sub-role.

Melody (mel). A melody may be defined as a thematic music material perceived as the
foreground, in opposition to the background accompaniment [253]. In most cases, but
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[141-148] (mel::imitation:Cl1) [142-148] (mel::imitation:Fg1)

Figure 3.8.: Allegro Vivace in the first movement of Symphony No. 4 by Beethoven,
measures 141-146, from edition [263]. The first clarinet (Cl1) and the first
bassoon (Fg1) play a melody in canon, a type of imitation (mel::imitation).
 http://algomus.fr/fm/beethoven4-141.mp3

not all, the melody is played by instruments of high register [4]. Melody identification
in symbolic scores is an active field of research [244, 248].
One might expect that there is only one melodic layer, (as it is the case for Figure 3.1,
where the violins are playing the melody), accompanied by an homorhythmic multiple-
part harmony resulting in a chordal texture [182], but this is not usually the case
in most symphonic excerpts. A polyphonic texture is also possible, by employing
a writing style with counterpoints techniques (a specific sub-role mel::imitation8 can
be introduced to describe this, Figure 3.8). Sections in which “no single part has
any melodic meaning” [223, p. 99] also exists. Those are sections that develop a
predominantly harmonic and/or rhythmic discourse. We see an example of this in
Figure 3.9, where the first violins were not annotated as melody on measures 40-42.
This is subject to interpretation (subjectivity in the annotation process is discussed in
Section 5.1.2.2). The instrument has been interpreted as fulfilling a mainly “rhythmic”
role. We annotate melody only in case of clearly identifiable themes, leaving the
possibility of having no melody in some segments. On the contrary, the annotation
guidelines specifies that when there is a short rhythmic fragment inside a melody, that
may last up to two measures, it is still annotated as melody, in order to favor longer
layers.

Rhythmic Accompaniment (rhythm). The references describe a lively orchestral ac-
companiment as a fluttering accompaniment [4, p. 632], that adds “movement” [142, III,
p. 53] and a pulsating [202] effect. Through the employment of certain techniques, it
can create dynamism [211, p. 363], or agitation [19, p. 12], by adding instruments and/or
playing “more notes” with the existing instruments. Benward and Saker [18], catego-
rize these elements as “rhythmic support”, and we identify such layers as fulfilling the
role of “rhythmic accompaniment”. The description can be further refined through the
sub-roles described below. In the following, a significant part of the measure means “at
least half of the measure”, that is at least two beats in 4/4 or 3/4 and one beat in 2/4
or 3/8.

8mel::imitation stands for the imitation sub-role of the melody (mel) main role.
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[40-42] (rhythm::scale:Vln1) [42-43] (rhythm+harm::sparse-h:TUTTI)
[40-41] (rhythm::repeat-note:Timp) / [43-43] (rhythm:Vln1)

(rhythm::arpeggio-u:Vln2.Vla) /
(rhythm::repeat-note-u:Vc.Cb)

Figure 3.9.: Allegro Vivace in the first movement of Symphony No. 102 by Haydn, mea-
sures 40-43, from edition [212]. In measures 40-41, four layers are heard:
one sustained harmony (woodwinds and brass), one with scales (first vio-
lins, see text for discussion), one with arpeggios (second violins and viola),
and one with repeated notes (cellos, contrabasses). From measures 42, the
orchestra, in (almost) tutti, plays sparse chords. The annotated layers are
rounded to measures.
 http://algomus.fr/fm/haydn102-40.mp3
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• rhythm::repeat-note. Repetition of the same note (as cellos and contrabasses in
Figure 3.9) or tremolo. A significant part of the measure is composed of the same
note in quarter notes or less.

• rhythm::oscillation. Oscillations around a chord note, with neighbor tones (ondu-
lation [4, p. 632]) or between two chord notes (“batterie” [142, p. 59], animated
harmony [211, p. 372]). A significant part of the measure is composed of at least
two oscillations between the same notes in quarter notes or less, with the same
rhythm.

• rhythm::arpeggio. A pattern that includes chord notes (as the cellos in Figure 3.1).
A significant part of the measure is composed of notes from one chord, with
possibly one non-chord tone.

• rhythm::scale. Diatonic or chromatic scales (as the first violins in Figure 3.9). A
significant part of the measure is composed of sequences of more than four
successive notes – ascending or descending.

The repetition of the pattern (same note or an oscillation/arpeggio/scale) underlines
the rhythmic effect of those layers.
These conventions can be relaxed in certain cases to obtain more coherent annotations
on the long scale (more about the annotation process is presented in Section 5.1.2.1). For
example, we decided to annotate the famous pattern in the Beethoven 5th symphony
(Figure 3.10) only as rhythm instead of rhythm::repeat-note, to differentiate it from other
rhythm::repeat-note in the same movement.

Sustained Harmony (harm). Parts that are playing long sustained notes mostly in
whole/half notes, occasionally quarter notes to form a chord. They are called “sustained
tones” by Piston [211, p. 371] or “harmonic accompaniment” by Rimsky-Korsakov [223,
p. 37]. In the examples already discussed we can find this realized through a single
pedal pitch supporting the underlying harmony (as the dominant D pedal on the oboe
in Figure 3.1), or by a multiple-part homorythmic harmony of several pitches (bassoons,
second violins, and violas in Figure 3.10).

Mixed Roles. Melody, Harmony, and Rhythm are not independent. Most of the times,
they are intertwined: melodic and rhythmic parts contribute to the harmony. Indeed,
when one performs harmonic analysis, one should consider all the parts of a composi-
tion. Moreover, harmonic layers may also present some melodic or rhythmic features.
We acknowledge that ambiguous cases exists, where it is difficult to characterize a layer
as either melodic, rhythmic, or harmonic, and we introduce the possibility to annotate
multiple roles for one layer. Two particular mixed roles emerge to be very important:

• rhythm+harm::sparse. Isolated chords (often homorhythmic) called “secco-like chords”
by Adler [4, p. 590] (as the tutti in Figure 3.9), or single notes (often on low reg-
ister instruments, such as in Figure 3.1), that may emphasize either strong beats
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Figure 3.10.: Allegro con brio from Symphony No. 5 by Beethoven, second thematic zone
in the recapitulation, measures 323-330, from edition [263]. The melody
in unison mel-u is played in a Call/Response scheme (<CR>) between the
first violins a:{Vln1}, and the flutes and the first clarinet in B♭ b:{Fl.Cl1}.
There is with the latter group a rhythmic layer in unison rhythm-u on the
cellos and the contrabasses {Vc.Cb}, playing the famous rhythmic pattern
of that symphony. There is a sustained harmony layer, in homorhythm,
on the bassoon, the second violins, and the violas (harm-h:Fg.Vln2.Vla).
 http://algomus.fr/fm/beethoven5-323.mp3

or counter-beats. Such a layer should include at most two notes in a 4/4 or 6/8
measure, and one note in 2/4 or 3/8, separated by rests.

• mel+rhythm::decmel. Called “decorative variation of the melody” by Piston [211,
p. 371], “harmonico-melodic phrases” by Rimsky-Korsakov [223, p. 99], or “het-
erophony” [182], such phrases combine at a single instrument the melody with a
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[126-127] (mel-h:Ob) / (mel+rhythm::decmel:Vln1)

Figure 3.11.: Allegro con spirito in the first movement of Symphony No. 103 by Haydn,
measures 126-127, from edition [212]. The main melody is played by
the first oboe (Ob), while the first violins (Vln1) are playing a “decorative
variation of the melody” [211], consisting in the same melody played in
sixteenth notes with ornamentations on counter-beats.
 http://algomus.fr/fm/haydn103-126.mp3

more (or less) “rhythmic” texture (Figure 3.11). We annotate such a layer when
the “underlying” melody is found in another layer. Otherwise an ornamented
melody is still annotated as mel.

Other combinations such as mel+harm and mel+rhythm+harm are possible, but rarely used.
Parameters such as meter and tempo have an influence on the assigned role. On slow
movements, for example, or on the slow introductions to first movements, a “significant
part of a measure” or a “number of notes in a measure” can be rather evaluated on only
a portion of the measure. That is to say, that the indications in the annotation guide
must be musically interpreted.

3.1.3.2. Relations inside a Layer

The principle of rhythmic synchrony is fundamental for instrumental blending and
the formation of layers. Then, (almost) every layer exhibit homorhythm as relation
between its constituent parts. We annotate it with h, following the relations description
in [89]. An example of this is the (almost) tutti chords in Figure 3.9. The relation can be
stronger in some cases, and we can find parallel motion (p), often in thirds or in sixths,
or in octave or unison doubling (u) (second violins and violas in Figure 3.9). We do
not make distinction between octave and unison in our annotations. We annotate the
prevalent relation, that does not have to be perfect. Such relations are tagged when they
apply to most of the parts: a parallel motion can be partly in thirds, partly in sixths, and
include other notes [89]. Relations go from the weakest (h) to the strongest (u), with all
unison doublings being also parallel and homorhythmic. In our annotations we mark
only the strongest relation that applies to a layer. So, hmeans that there is homorhythm
without parallelism and unison. The no relation tag 0 is applied to layers formed by
one instrument alone.
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Formally, given a set of inside-layer relations ρ, such as ρ = {0, h, p, u}, we can chose it
as the set of descriptions. Then, the description function

δrelations :ℒ → ρ,
ℓi ↦→ r,

assigns to every layer ℓi, where i ∈ ID, a relation r ∈ ρ. With this description, each layer
has an inside-layer relation (Figure 3.12).

Figure 3.12.: Layer description: relations. All layers can be mapped to a relation from
ρ = {0, h, p, u}.

3.1.3.3. Relation between layers: Orchestral Effects as Meta-Layers

The mechanisms of segmental grouping, can make several orchestral effects emerge from
the succession of layers with varying orchestration [91]. In this study we focused on the
formation of layers, but we have included some of these effects in our annotations. The
syntax allows to encode them as Meta-Layers, i.e. relations between different layers. One
example is “Call-and-response” (CR) schemes (see Figure 3.10). Called “transference
of passages and phrases” by Rimsky-Korsakov [223, p. 107], or “antiphonal writing”
by Adler [4, p. 273], they are formed by sequences of concurrent layers in which the
instrumentation and/or the roles of involved instruments periodically change. We an-
notate call-and-response schemes with CR(f), where f is the frequency of alternation
between the two component layers, expressed in number of measures.

We can formally describe meta-layers relations as descriptions given to sets of layers.

Definition 3.9 (Meta-Layer Description Function). Letℒ = {ℓi}i∈ID be a valid collection
of layers. Given a set of descriptions M, a meta-layer description function is a function

µ :2ℒ → 2M,
L ↦→ d,

that assigns a set of descriptions d ⊆M to every subset L ⊆ ℒ.

We are not really interested in detailing a meta-layer relation for every subset L ⊆ ℒ,
so the function can take as value the empty set ∅.
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Figure 3.13.: Layer description: meta-layers. All sets of layers from 2ℒ can be
mapped to a point of 2M, i.e. to a set of meta-layer relations from
M = {CR(1), CR(0.5), . . .}, or to the empty set ∅. Here, ℓ1 and ℓ2 are
part of a call-and-response scheme with a frequency of 1 measure; the CR
scheme between ℓ3 and ℓn has instead a frequency of half a measure.

3.1.4. Properties of Layers and Orchestral Texture
In this section we define two properties of orchestral layers that can seem trivial at first,
but that will be helpful to make analogies when defining abstract layers as components
of Layer Score in Section 3.2. We can define the span and the total instrumentation of a
layer, by projecting it onℳ and on ℰ.

Definition 3.10 (Span and Total Instrumentation of a Layer). Given an orchestral layer
ℓ ⊂ ℳ ×ℰ we can define its span as its projection onℳ.

span(ℓ) ≔ P⊥ℳ(ℓ) ⊂ ℳ

The total instrumentation of a layer will be instead its projection on ℰ.

ti(ℓ) ≔ P⊥ℰ (ℓ) ⊂ ℰ

We can visualize the projection in Figure 3.14. We can now also attempt to give a
definition of the orchestral texture of a measure.

Definition 3.11 (Orchestral Texture). Given a valid collection of orchestral layersℒ, the
orchestral texture τm at measure m is the set of all orchestral layers ℓ ∈ ℒ such that
m ∈ span(ℓ).

3.1.5. Orchestral Layers and OrchARD Blends
In Section 2.5 we introduced a few corpora of orchestral music, among which the
OrchARD database, which contains orchestral scores on which several perceptual phe-
nomena have been annotated, following McAdams et al.’s Taxonomy of Orchestral
Grouping Effects (TOGE) [178] (see also Section 2.1.2). McAdams’s orchestral blend is
a very similar concept to the orchestral layer we have defined in this chapter. In fact,
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Figure 3.14.: Layer Projections: Span and Maximal Instrumentation of a Layer. The
span of layer ℓ1 is its projection on the measures axis ℳ and its total
instrumentation is its projection on the ensemble axis ℰ.

we can say that formally, they can be defined exactly in the same way, so, following
Definition 3.5, an orchestral blend β is an orchestral layer

β ⊂ ℳ ×ℰ,

whose elements are couples of measures and instrumental parts.
The difference between layers and blends is given by the criteria with which instru-
ments are grouped. The model for layers annotations that we proposed here, and that
we used to annotate a corpus of first movements of classical symphonies (Chapter 5) is
rooted in ideas based on perceptual principles [91], including musical streams [176] and
Cambouropoulos’s perceptual voice [31], but also on music theoretical ideas on texture
and on the roles that layers and voices serve in a composition in the classical style [18].
The orchestral blends annotations in OrchARD were build to study perception, so they
focus on the timbre of the sounds, and they are based on a reference recording for
which the score serves as support.
The biggest difference between the two models is that, in our model, onset synchrony
or synchronicity [234, 31] is the primary factor that gives raise to homorhythmic layers.
In the special cases when the different instruments present also parallelism and/or
unison, they are always part of the same layer. This is not always the case for blends,
because even instruments that are playing exactly the same part might not blend well
because of timbre characteristics, or the musicians’ performance, or the recording room
and equipment. An example of non blend due to timbral heterogeneity is what happens
between measure 183 and 186 of the third movement of Debussy’s La Mer: the english
horn (Eh.), the horn 1 (Hn in F 1 in this score), and the glockenspiel (Glock.) are playing
the same part, but the glockenspiel’s timbre does not blend well with that of the other
two instruments (see Figure 3.15).
In the example in Figure 3.15 we have a blend βFigure 3.15 = {m183,m184,m185,m186} ×
{Eh., Hn in F 1}, but we might want to group together the english horn, the horn 1, and
the glockenspiel in one layer ℓFigure 3.15 = {m183,m184,m185,m186}×{Eh., Hn in F 1, Glock.}.
Then we have that βFigure 3.15 ⊂ ℓFigure 3.15, because the layer includes all instruments
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Figure 3.15.: Third movement of La Mer by Debussy, measures 183-186, figure repro-
duced from [178]. The glockenspiel (Glock.) does not blend with the
english horn (Eh.) and the horn 1 (Hn in F 1), and its timbre is still well
identifiable in the mixture.
 http://algomus.fr/fm/debussy-la-mer-iii-183.mp3 (audio from [178])

that are playing the “same part”, even though there is timbral heterogeneity.
To further link these two models we could describe the blending components of a layer
through a new layer description function that would map every layer to a set of blends.
Conversely, we could introduce blend description functions in a similar way. They
could be used to describe the blend type from the TOGE, and to map each blend to its
superset layer.
Another difference is that we annotate also layers constituted by one single instrument.
Instead, a group of one instrument is never considered as a blending, since this is a
property of a group of two or more instrumental parts. The result is that layers span
the entire duration of a score, while blends are only annotated when two or more
instruments are fusing their timbres, giving rise to more sparse annotations. At every
measure, our layer annotations on the classical symphonies form a partition of all of the
instruments that are not silent. The same does not happen with blends in OrchARD,
as not all playing instruments contribute to a blend.
Blends in OrchARD also have their specific description, different from the layer role
and relationship descriptions given by our model. For example a timbral augmenta-
tion blend α can be seen as the union of two sub-blends: a dominating component
d ⊂ ℳ ×ℰ and an embellishing component e ⊂ ℳ ×ℰ, i.e. α = d ∪ e.
In the rest of the thesis, we mainly adopt the textural point of view in defining and
studying layers, except for Chapter 6, which takes the timbre and perception point of
view to study blends in OrchARD.
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3.2. The Layer Score
An orchestral score can be analyzed at different levels, like other music objects and
concepts. Taking an orchestral score as a “neutral level” [201], the analyst can examine
orchestration techniques. We have focused on textural/instrumental aspects, and we have
presented in Section 3.1 a taxonomy to analyze how orchestral music can be split into a
number of layers with a predominantly melodic, rhythmic, or harmonic role, or a mix
of them. Layers are highlighted by combinations of instrumental timbres [149], and
auditory grouping processes favor the emergence of orchestral effects [178]. Describing
and modeling such high-level abstract concepts is a challenge for (digital) musicology
and music analysis. In this section we propose a model that may be used as an in-
termediate step when composing or orchestrating music, in addition to being a useful
concept in music analysis.

We start by presenting some ideas that inspired this model in Section 3.2.1, then we
present the layer score (Section 3.2.2), and finally we formalize it in Section 3.2.3.

3.2.1. Behind Orchestral Music: Composer/Orchestrator Sketches
Any music, any score, may be seen as a rendering of high-level musical ideas, that may
be used as intermediate steps when composing or improvising music, or may serve an-
alytical purposes. Orchestral layers and effects are no exception, but are they planned
by the composer? Were these layers and effects present in the composer’s – or the
orchestrator’s – mind when envisioning the piece? It is known and documented that
some composers develop sketches at some point of their workflow. These can contain
rough ideas, themes and motives, incomplete melodies and harmonies, that can be
further developed and serve as inspiration for writing more complete and elaborate
music [233, 281]. In particular, Beethoven has left us sketches that have been extensively
studied. They contain precise musical ideas such as patterns, themes, and sometimes
orchestration drafts [129]. De Sousa [59] presents the idea of textural spaces, arguing
that composers are encouraged to explore the options and possibilities offered by the
orchestra by moving in these spaces. The model is powerful, but it is unclear weather it
might correspond to conscious or unconscious ways in which composers model com-
plex structures with intricate layers in their mind.

These raw sketches can thus contain, in some cases, germinal ideas of concurrent
musical parts and layers. It is a rough plan that preexist the orchestral score, in which
the composer expand these initial plans. There are some MIR studies that have explored
the idea of construction from sketches. In the realm of symphonic music Gotham et
al. [95] presented a co-creative experiment in which they created a plausible version
of a Beethoven’s 10th Symphony, letting a composer interact with AI models to build
the score starting from original sketches by Beethoven himself9. In this process they

9Digitized versions of some of Bethoven’s sketches preserved at Beethoven-Haus in Bonn can be con-
sulted at https://www.beethoven.de/en/archive/list/node/5179594084712448/Sketches
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introduce a short score as a set of raw materials before orchestration. Somehow, in
jazz/pop styles, lead sheets with melodies and chords may also be seen as a condensed
version of a music piece – or could correspond to a sketch of the final song. MIR and
AI methods aiming at (co-)creating such music often generate such lead sheets at first,
then proceed with accompaniment generation [118], even if it is debatable whether this
way of proceeding can be considered good practice in pop music composition, and an
end-to-end generation is sometimes preferred [5].

3.2.2. Defining and Modeling a Layer Score

Inspired by such hypothetical intermediary “sketch scores” and by analytical consid-
erations, we define the layer score [165] as a score with a variable number of layers, each
one with a given role, following the description of roles we introduced in [149] and
Section 3.1 for classical-romantic orchestral music. Such a layer score has no indication
on the instruments that should play the layers, making it an abstract version of a music
piece, for which many realizations are potentially possible in terms of instrumentation.
On the opening of the Beethoven’s 9th Symphony, we analyze three layers with different
roles, ℓfront, ℓrhythm, and ℓharmony (Figure 3.16a). Those layers are distributed on several
instruments in the full orchestral score. Here, one part in the layer score (Figure 3.16b)
roughly corresponds to one layer in the orchestral score, but the actual music in the
orchestral part could differ more from the content of the layer score, possibly depending
on the capabilities of the instruments chosen to render a layer. For example, rhythmic
motion could be rendered with a different density of notes if reproduced through a
timpani roll, or through tremolo strings sul ponticello.
At the opposite, if we consider now a piano reduction of an orchestral score, the same
layers will be blended together into the two staves of the piano reduction – a single
pianist should be able to play it. In the layer ℓrhythm of the opening of the Beethoven’s
9th Symphony, the lower strings repeat chords made of A and E, whereas the piano
reduction by Liszt alternates between the same pitches (Figure 3.16c). Again, the actual
music in the piano reduction could be different, in the rhythm organization for instance.
In practice, the octaves often differ in piano reduction, the pianist hands not having
the same ambitus as the orchestra. In some cases, the actual pitches may even differ
between instrumentations, for example including patterns or scales in some of them.
In terms of size we can observe that the layer score is in between the orchestral score
and its piano reduction, it has generally fewer staves than a full orchestral score and
more staves than a piano reduction. But we can rather interpret it (anachronistically)
as a common ancestor between the two. We can speculate, exploring uncertain terri-
tory, that the layer score contains the most basic “essence” of the music, whatever that
might mean, but not the actual music rendering. In any case, it includes structural,
melodic, harmonic content, and some of the textural content, but it is disconnected
from any aspect related to instrumentation. It is potential music that can be reduced
to fit the piano, expanded to the symphonic orchestra, or adapted to any other type
instrumentation. This concept of layer score allows thus to decouple composition from
instrumentation and orchestration (although this decoupling may be artificial) and to
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(a) Full Orchestral Score. 13 tracks/instruments (7 in this extract)
Transcribed by ClassicMan on musescore.com
Textural labels from [149]. Front: Vln1, Vla, Cb; Rhythm: Vln2, Vc; Harmony: Cl, Hrn

(b) Layer Score. 3 layers

(c) Piano Reduction. Arr. by Franz Liszt, ed. Breitkopf & Härtel

Figure 3.16.: First eight measures from the first movement of Symphony No. 9 by
Beethoven, op. 125. (a) The orchestral score can be decomposed into
three layers: one with an harmonic role (red, dark), one with a rhythmic role
(blue, light), and a third one with a front role, that is nevertheless difficult
to categorize as a melody (yellow, very light). (b) The layer score contains
one part for each of these three layers, λharmony, λrhythm, and λfront. (c) In the
piano reduction, the harmonic and rhythmic layer are blended together
and rendered with a pianistic texture, which is different from the orchestral
version. The left hand alternates between that harmonic-rhythmic layer,
and the front layer.
 http://algomus.fr/fm/beethoven9-orchestra.mp3

 http://algomus.fr/fm/beethoven9-piano.mp3

54

musescore.com
http://algomus.fr/fm/beethoven9-orchestra.mp3
http://algomus.fr/fm/beethoven9-piano.mp3


3.2. The Layer Score

devote our attention mainly to the latter ones.

Back to the question of composer sketches, a layer score is not intended to repro-
duce an existing compositional practice and we do not claim either that writing such
layer scores would be a desirable practice. Writing music for the orchestra (or for any
other instrument) can be a non-linear process, with iterations between high-level ideas
and actual music content. For example, the constraints given by the ambitus of each
instrument influence the composition itself, forcing the composer to rethink some of the
choices they have already made, and even to rewrite major sections of the composition.

What we are formalizing here is a new object that can help separate certain aspects of
symphonic writing, and give new perspectives in understanding and modeling orches-
tration techniques, both for analysis and for computer-assisted creativity. For example,
piano reduction and orchestration from piano are symmetrical tasks. Orchestration
from piano usually requires “de-pianotizing” the piano music, including voice sepa-
ration [166] or texture analysis [49] – as piano reduction requires “de-orchestrating”
the orchestral music. With a layer score, we have an object with “de-pianotized” and
“de-orchestrated” music, allowing to develop computer assisted processes with inter-
mediate steps that can increase the possibilities for human intervention. The following
chapters will detail these steps, in particular Chapter 4 illustrates a framework for the
computer-assisted orchestration of a piano score passing through a layer score.

3.2.3. Formal Formulation of a Layer Score
Piano Scores and Layers

We have seen that a layer is rendered differently in an orchestral score, in a piano score,
and in the layer score. In particular with the number of staves involved. We remind that
an orchestral score is a set of orchestral notes in the space 𝒯 × 𝒫 ×𝒟 ×ℰ. We can give
an analogous definition for a piano score, even though piano music is not the focus of
this thesis.

Definition 3.12 (Piano Notes and Piano Score). Let 𝒯 = [0, tend] ⊂ R be the time,
let 𝒫 ′ = {A0, A♯0, . . . , C8} ⊂ 𝒫 be the pitches of the grand piano keybord, and let
𝒟 = Q be fractions representing the durations of notes. A piano note is defined by
(t,p,d) ∈ 𝒯 × 𝒫 ′ ×𝒟. Then a piano score P is a subset P ⊂ 𝒯 × 𝒫 ′ ×𝒟.

Now, we can define what is a piano layer, but we won’t enter into difficult discussions
about piano texture [49]. We do not even introduce measures here since, even if we
impose layer boundaries to happen at measure changes, we cannot be sure that the
measure is enough of a temporal coordinate to separate layers (see Figure 3.17). We
take than the safest approach and define a piano layer as a subset of the score, which
gives us the following.

Definition 3.13 (Piano Layer). Let P ⊂ 𝒯 × 𝒫 ′ × 𝒟 be a piano score, where 𝒯 =

[0, tend] ⊂ R is the time, 𝒫 ′ = {A0, A♯0, . . . , C8} ⊂ 𝒫 are the pitches, and 𝒟 = Q are
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Figure 3.17.: Fugue No. 1 in C major from the Well-Tempered Clavier, by Bach, BWV 846,
measures 12-13. Measure and pitch are clearly not enough to distinguish
the four voices [98]: the highest note for the bass in the first measure (F3)
is higher in pitch than the lowest note of the tenor (E3). Even with time
and pitch, the four voices cannot be completely distinguished: the unison
on the E3 (second note on the lower staff) is an example of a pitch at a
certain time that belongs to two different parts (bass and tenor). In this
case duration allows to distinguish the two notes belonging to different
voices.

fractions representing the durations of notes. Then, a piano layer π is

π ⊂ P ⊂ 𝒯 × 𝒫 ′ ×𝒟,

whose elements are tuples of time positions, pitches, and durations.

It is not sure, whether piano layers must be pairwise disjoint to be valid. It might be
that a note belongs to multiple layers, even if it is not graphically repeated two times in
the printed score. Once again, we leave the discussions about piano layers and validity
to further studies. Whatever definition we take for a piano layer and its validity, once
we have a valid collection of piano layers π we can connect layers in piano scores and
orchestral scores for the same piece. Then, orchestration and piano reduction would
be the following transformations.

P ⊂ 𝒯 × 𝒫 ′ ×𝒟 orchestration−−−−−−−−→ O ⊂ 𝒯 × 𝒫 ×𝒟 × ℰ

P ⊂ 𝒯 × 𝒫 ′ ×𝒟 ←−−−−−−
reduction

O ⊂ 𝒯 × 𝒫 ×𝒟 × ℰ

We prefer to introduce the layer score to better understand these operations.

Layer Score

In a layer score we want to make some abstraction, and avoid considering the instru-
mentation. How can we then define a layer in that case? One option is to define it
simply as a set of notes.
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Definition 3.14 (Abstract Layer). Let N ⊂ 𝒯 × 𝒫 × 𝒟 be a set of notes, where 𝒯 =

[0, tend] is the time,𝒫 is the set of possible pitches, and𝒟 = Q are fractions representing
the durations of notes. We define an abstract layer λ as a set of notes:

λ ⊂ N ⊂ 𝒯 × 𝒫 ×𝒟

A collection of abstract layers Λ as is a set Λ = {λi}i∈ID.

The abstract layer has some properties, for example the span. The span of an abstract
layer is similar to that of an orchestral layer (Section 3.1.4) (and it would be similar to
that of a piano layer, if we had defined it) and it is an interval of measures,

span(λ) = [mbeg,mend] ⊂ ℳ,

such that ∀(t,p,d that belong to λ, the onset t ∈ [mbeg,mend]. Moreover there must
exist notes whose onset is in mbeg and in mend. It is possible then to identify each
orchestral layer or piano layer with an abstract layer with the same span. We can also
apply layer description functions to abstract layers. We are now ready to define the
layer score as a score in which we replace the instrumentation information ℰ with
abstract layers.

Definition 3.15 (Layer Score). Let 𝒯 = [0, tend] be the time axis,𝒫 be the set of possible
pitches,𝒟 = Q be fractions representing the durations of notes, and let Λ = {λi}i∈ID be
a set of abstract layers. Then, we can define layer notes as (t,p,d, λ) ∈ 𝒯 × 𝒫 ×𝒟 ×Λ,
and a layer score L as a subset L ⊂ 𝒯 × 𝒫 ×𝒟 ×Λ.

Basically, a layer score looks very similar to an orchestral score, with the difference that
the staves of a layer score correspond to layers instead of instruments (Figure 3.18). The
fourth dimension of an orchestral score is the ensemble ℰ, that of a layer score is the
layers Λ, while a piano score has only three dimensions in our definition. Whoever
is writing a layer score is responsible for creating meaningful layers, and they should
be coherent in themselves. If the layer score is the first step of a composition, then
layers could provide a plan for perceptual streaming. If the layer score is created from a
piano score or an orchestral score, then the layers can be used to represent the original
piano/orchestral layers.
Analogously to what we have done for orchestral texture, we can also define abstract
texture.

Definition 3.16 (Abstract Texture). Given a collection of abstract layers Λ, the abstract
texture τm at measure m is the set of all abstract layers λ ∈ Λ such that m ∈ span(λ).

The difference between orchestral texture and abstract texture is in the nature of the
layers, orchestral layers have information about instrumental parts, and abstract layers
do not.
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Figure 3.18.: In this schematized representation of a layer score, we can see that staves
in a layer score correspond to the abstract layers. Black boxes indicate
the portion of the staff corresponding to the span of the abstract layer, i.e.
where there are notes.

3.3. The Orchestration Plan
Planning is omnipresent in music writing. In masterpieces nothing is left to the chance,
but every element is meticulously curated to perfectly fit together with each other. The
same goes for orchestration. In a good orchestration everything is perfectly balanced,
and the instrumentation is evolving during the piece, telling a story, keeping the lis-
tener focused, and refreshing the ears with new interesting surprises. In this section
we propose a model, the orchestration plan, which can be used to describe potential
instrumentation and orchestration, favoring the development of computer assisted or-
chestration pipelines.

We start by discussing the inspirations from traditional practice (Section 3.3.1), then
we formally define the orchestration plan (Section 3.3.2), we discuss the differences
and similarities between layer annotations and orchestration plans (Section 3.3.3), and
we conclude by showing how orchestration plans allow the transformation of abstract
layers into orchestral layers (Section 3.3.4).

3.3.1. Planning in Traditional Orchestration Practice
Students in the orchestration class at the Conservatoire de Lille, which I had the plea-
sure of observing for the past two and a half years, have a project to complete at the
end of their first year. For this project they choose an existing composition, usually
for piano solo, and they write an instrumentation of the piece for an ensemble with
2-10 instruments. On their second year they have a similar exercise, in which they
select a Beethoven piano sonata, and they orchestrate it for a classical orchestra, in
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the style of Beethoven. Before starting to write the actual arrangement/orchestration,
the teacher, Vincent Paulet, is asking them to think ahead and present an instrumenta-
tion/orchestration plan. The form in which this plan is created is free, and can be more or
less structured. I have observed that, in general, the students write some annotations
on the original piano score, concerning, for example, the entrances of the instruments.
These annotations naturally segment the piece into sections with different instrumenta-
tion. This allows them to have better control over the effects of novelty or contrast they
want to achieve, and reserve some instruments for certain sections in which they would
fit well. The choices are made on the basis of ambitus and timbre of the instruments.
These plans might also go as far as highlighting certain voices in the score, similarly to
what would happen in a layer score, and to connect them with arrows to one or more
instrument names.

Belkin [15] identifies five key points that should be planned in an orchestral work:
changes of sounds, accents, cadences, progressions, and gradation of climaxes. Changes
of sounds and timbre must be logical in the context of phrases and motives. Accents that
require to momentarily add sounds or change playing techniques, must do so in pro-
portion to the desired effect and the context. Structure and cadences can be highlighted
with orchestration. Progressions are evolutions that occur over a span of time and can
correspond to an evolving texture. Finally, with gradation of climaxes, Belkin suggests
that one climatic moment towards the end of the piece should carry more emphasis
and “stand out” with respect to the other ones.
In the context of the functional orchestration model, F. Lévy [164] defines a functional
operation as a “musical aim or goal, verbalized or not verbalized by the composer, but clearly in
their mind before starting to write, which helps them to choose a particular technique to achieve
a particular perceptual effect”. This means that composers and orchestrators are planning
things like contrasts, merging entities, layers, and other effects.

We take inspiration from all these ideas and we propose a formalization of the con-
cept of orchestration plan, in which we explicitly divide the piece in segments, and we
describe the instrumentation in each segment, allowing to be so precise as to indicate
a group of instruments for each layer of the composition. Our model is thought to
accompany a layer score to describe the potential orchestration that can emerge from
them, but it is possible to use it without any reference layer score. It can be used at
different levels of detail, by simply indicating the instruments in each segment or by
going as precise as the “measure level”, ultimately making the plan look like the layer
annotations (Section 3.1) for a yet to create score. Those objects remain conceptually
different, as discussed in Section 3.3.3.

3.3.2. Formal Formulation of the Orchestration Plan

Our first definition of an orchestration plan was given in [165]. In the context of that
project, an orchestration plan was used together with an handmade layer score in order
to make a co-creative orchestration of existing piano pieces from the suite Angeles by

59



3. Abstract Models of Orchestration

Gissel Velarde. Here we give a slightly more formal definition of such an orchestration
plan, that can in principle be implemented and generated in several different ways. We
postpone to Chapter 7 the description of how the implementation and the generation
were done in the Angeles project.
The goal of the orchestration plan is to assign instruments to layers. In order to define
it we need to introduce some other objects before. We start by defining an orchestration
segment, as a partition of time, alternative to measures, and less fine-grained.

Definition 3.17 (Orchestration Segment). Let 𝒯 = [0, tend] be time, and let ℳ =

{m1,m2, . . . ,mN} ,N ∈ N be a partition of 𝒯 into measures. Then time 𝒯 can be
partitioned into disjoint intervals 𝒮 = {si}i=1,...,S, such that each interval is the union
of one or more consecutive measures, i.e. si =

⋃
j∈𝒩i⊂ℳmj, and that their union is

equal to the entire set 𝒯 , i.e.
⋃

i=1,...,S si = [0, tend]. We call the intervals 𝒮 = {si}i=1,...,S
orchestration segments.

For our definition of segments all that we require is that the segmentation is a partition
of time in wider parts than measures. The musical meaning comes from comparing the
segmentation with a layer score. We can assume that a piece is made up of different
segments where texture, which is the combination of simultaneous layers, does not
change. This structure would look like the one shown in Figure 3.19. In fact, it can
be difficult to fix a precise boundary between segments, since the transition from one
texture to the next one can be smooth and progressive, and it can happen over several
measures. The segmentation with rigid boundaries is indeed an approximation, but we
consider that it serve our purposes, if we use it cautiously and we consider it more like
a logical division than a time division in the applications. In a process of orchestration
from a layer score, for example, the segmentation can be done at the relevant points
where orchestration changes are wanted. So a segment is a set of measures on which
the envisioned orchestration should not change.
The same segmentation can be used with a full orchestral score. As for the layer
score, the orchestral layers are expected to remain constant during a segment. The
instrumentation of each layer, instead, can evolve. We recall that the layer instrumen-
tation at measure m is the set of the instrumental parts that belong to the orchestral
layer at measure m (Definition 3.6). Over the measures of a segment, the layer in-
strumentation might be constant, but might also change, progressively getting bigger
(orchestral crescendo) or smaller (orchestral diminuendo). We can then define the layer
instrumentation at a segment.

Definition 3.18 (Layer Instrumentation at Segment s). The layer instrumentation for an
orchestral layer ℓid at segment s is

ℓisid =

⋃
m⊂s

ℓimid ,

i.e. the union of the layer instrumentations for ℓid at all measures m that belong to the
segment s.
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Figure 3.19.: On the top, a scheme of the segmentation of a layer score into orches-
tration segments. Segments are a less fine-grained partition of time than
measures. On the bottom, a possible segmentation of the layer score for
the beginning of Beethoven 9th Symphony. The second segment could
start with the start of the upper A in the harmonic layer.

We can see an example of what this means in Figure 3.20.
The orchestration plan wants to mimic that for abstract layers in a layer score. In
fact, through the orchestration plan we want to prescribe the layer instrumentation at
segment s for all segments and all layers of a potential orchestral score that might be
written starting from the given layer score.

Definition 3.19 (Orchestration Plan). Let Λ be a collection of abstract layers, 𝒮 be a
segmentation of the piece, and let ℰ be an orchestral ensemble. Then an orchestration
plan ϕ is a function that assigns a set of instruments to every couple of layer and
segment, i.e.

ϕ : Λ × 𝒮 → 2ℰ

(λ, s) ↦→ I ⊂ ℰ.
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Figure 3.20.: The layer instrumentation ℓi
s1
1 at segment s1 of layer ℓ1 is the union of the

layer instrumentations ℓim1 for layer ℓ1 at all the measuresm of the segment
s1.

For example, an abstract layer λmel at segment s1 could be assigned to cellos and
contrabass ϕ(λmel, s1) = {Vc, Cb} ⊂ ℰ. Notice that the set I can also be the empty set.
For example the layer λmel might be silent at section s5, and not be assigned to any
instrument ϕ(λmel, s1) = ∅.

Definition 3.20 (Segment Instrumentation). Let Λ be a collection of abstract layers, 𝒮
be a segmentation of the piece, and let ℰ be an orchestral ensemble. Let s ∈ S be
a segment, and ϕ be an orchestration plan. Then a segment instrumentation SIs at
segment s is the set of the couples (λ,ϕ(λ, s)) for all λ ∈ Λ.

SIs = {(λ,ϕ(λ, s))}λ∈Λ

Defining the segment instrumentation for every segment of a piece, is equivalent to
defining the orchestration plan, and in applications we have preferred listing segment
instrumentations to describe the envisioned orchestration for the piece. An example
from the Angeles project is the following. We have segment s1 in which a set of simulta-
neous abstract layers Λ = {λmel, λrhy1+3, λrhy2} are present and playing in the layer score.
We give the segment instrumentation SIs1 in which each layer has its assigned set of
instruments (see Figure 3.21).

SIs1 =


(λmel, {Vc, Cb}),
(λrhy1+3, {Horn1, Horn2, Trp1}),
(λrhy2, {Fl1, Fl2, Cl1, Cl2})


Figure 3.21.: Example of segment instrumentation from the Angeles project. Three layers

λmel, λrhy1+3, and λrhy2 are mapped to mutually disjoint sets of instruments.

We could also enforce the same validity condition as for the orchestral layers, and
require the sets in one SIs to be mutually disjoint. This is what has been done in the ex-
ample of Figure 3.21, but it is not strictly required to obtain valid layers in an orchestral
score.
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3.3.3. Orchestration Plans and Texture Annotations: Differences and
Similarities

The syntax of the orchestration plan is very similar to that of the orchestral layers
annotations. It describes, for each segment, the layers using instruments in a predefined
order and details the layers and roles (Figure 3.22). The orchestration plan can be less
precise than the annotations: rather than assigning a layer instrumentation to every
abstract layer at every measure, it will limit itself to assign a segment instrumentation
to every segment, leaving more freedom to the instrumentation of each measure.

InstList: <Fl.Ob.ClBb.Fg|HrnF.TrpBb|Vln1.Vln2.Vla.Vc.Cb>
[p01] <2.2.|13|...mm> 1:rhy1:brass 2:rhy2:wood 3:rhy3:brass m:mel:mel2 (0)
[p02] <....|..|123mm> 1:rhy1:string 2:rhy2:string 3:rhy3:string m:mel:mel2 (4)
[p03] <....|13|.22m.> 1:rhy1:brass 2:rhy2:string 3:rhy3:brass m:mel:mel1 (0)

Figure 3.22.: An example of orchestration plan from the Angeles project. The plan
starts by declaring the ensemble (InstList), where the instruments are
separated by dots (.) and the instrumental families are separated by
pipes (|). After that, each line represents a segment. For example, in the
segment [p01] the segment instrumentation is comprised of four layers
λrhy1,brass, λrhy2,wood, λrhy3,brass, and λmel,mel2. The layers are mapped to the
instruments appearing in the order declared in InstList: For example,
the "<2.2.|" bloc in the woodwinds refers to the layer instrumentation
λrhy2,wood, with here flutes (Fl) and clarinets (ClBb). Dots (.) are here used
as placeholder for silent instruments, while pipes (|) are again used to
separate instrumental families.

We have seen that even if we don’t have access to the true layer score, which also might
have never existed, it is possible to construct a plausible layer score. The orchestration
plan is another model, that together with the layer score, tries to describe orchestral
music before orchestration. With those two models we separate the composer from the
orchestrator, without concerning ourselves with being faithful to historical reality.
What would then be the orchestration plan for an existing classical symphony? This
should be an object that relies on an existing segmentation of a layer score, and that
assigns a group of instruments to every layer in every segment. The nature of this plan
then depends on how we segment the piece. The annotations of the layers can be seen
and interpreted as an orchestration plan, with segments of one or more measures. After
all, there is a one-to-one correspondence between a group of instrument in a measure
and the layer they are playing. So if the annotations can map the instruments to a layer,
they can as well map the layer to the instruments. A segment in such orchestration
plan correspond to a portion of the piece in which the instrumentation of each layer
does not change.
While at this scale the annotations and the orchestration plan correspond and can
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be represented by the same text file, they remain conceptually two distinct models,
being one approximately the inverse of the other. The segmentation is chosen by the
artist in the orchestration plan, while it is imposed by the score for texture annotations.
The main focus of the annotations are the roles, and for the plan, the instruments.
When annotating texture in an orchestral score we are answering the question “what
is there?”, an approach in which we analyze the score as the “neutral level” [201].
When creating an orchestration plan for an existing piece the question is “how could the
composer have created this?”, which is more open and subjective. The orchestration plan
leaves more freedom to interpretation, while annotations aim at being more objective
and quantitative.

3.3.4. Transforming Abstract Layers into Orchestral Layers
We have introduced all the objects that we propose as abstract models of orchestration,
so we can now try to link them and to see what it means to perform orchestration with
these objects. The basic transformation of orchestration that we can perform is that
of orchestrating a layer. A piano layer π ⊂ P is a set of notes. The same notes, taken
in isolation, out of their original context in a piano score, constitute an abstract layer
λ. The operation that we want to do in orchestration is to transform an abstract layer
λ ⊂ 𝒯 × 𝒫 ×𝒟 into an orchestral layers ℓ ⊂ ℳ ×ℰ. The role of the orchestration plan
function ϕ is to provide the missing information about the instrumentation I from the
ensemble I ⊂ ℰ, at every segment s ∈ 𝒮. A model can then collect this information and
act on the notes to output an orchestral layer (see Figure 3.23).

Figure 3.23.: An orchestration model is orchestrating the abstract layer λ into the orches-
tral layer ℓ following the instrumentation I decided by the orchestration
plan ϕ for segment s.

In the next chapter we will discuss more in detail the possible transformations between
abstract models and we will introduce a framework for computer assisted orchestration,
using these transformation.
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Traditionally, we think about composition as the act of creating music from scratch by
a composer, a person sometimes described as “a genius”. However, this perspective
oversimplifies the creative process. Composition is not always about creating some-
thing completely new but it often involves building on existing ideas, musical forms, or
pieces. Music can be written for piano, for orchestra, for string quartet, for brass band,
or for any other solo instrument and ensemble. Orchestration deals with transforming
existing music from ensemble to ensemble. In traditional orchestration, two main trans-
formations are typically considered, proceeding in opposite directions: orchestration
from piano and piano reduction from orchestra, with some variants like reducing for
piano four hands.

Figure 4.1.: The components of the framework: objects, agents, and constraints. Objects
are divided into scores and abstract models of orchestration. Agents can
be human or algorithmic. Some examples of constraints are shown in the
figure.

With the help of the three abstract models just introduced we can reinterpret and clas-
sify human processes in traditional orchestration and tasks related to orchestration in
MIR, and we can describe an environment in which human and algorithmic agents can
interact to perform creative and analytic tasks. In this framework (Figure 4.1) there
are some objects that serve as input, target, and intermediate steps. The agents can
manipulate these entities and exchange information through the intermediate objects,
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to achieve their shared goal. Objects are scores (piano and orchestral score) and abstract
models of orchestration (texture annotations, layer score, and orchestration plan). A
segmentation can also be considered as an auxiliary object. Abstract models will be
interpreted as intermediate objects in certain processes, but will also constitute the
input and/or the target for new tasks. Other constraints are introduced for certain
tasks. Some example of constraints that can be introduced for certain tasks are a given
melody, a chord sequence, a target audio, or a desired perceptual effect.

This chapter starts by discussing and reinterpreting existing orchestration tasks in MIR
with the help of the abstract objects introduced in the previous chapter (Section 4.1). At
the same time new tasks will be introduced. Then we will focus on creation (Section 4.2)
of orchestration with the help of computers, and we will introduce possible processes
and interactions.

4.1. Reclassifying Orchestration Tasks in MIR

The art of orchestration involves a range of tasks, as summarized in Table 4.1. Our
understanding of orchestration can be improved by considering tasks in light of the
abstract models introduced in Chapter 3. Tasks can be identified and classified by their
input and output. They sometimes receive different names when they are performed
by humans or by MIR algorithms.
In the table, we mark the tasks modeled in this thesis with a black star (⋆). In particu-
lar, all generative tasks addressed by SymphonyNet [158] can be approached with our
SymphonyNet-based transformer model (Chapter 8, Tasks U0, U1, and C1), we have
implemented a model to generate orchestration plans for the Angeles project (Chapter 7,
Task P3), and we have addressed the detection of orchestral blends (Chapter 6, Task
A1b, which can be thought of as a kind of texture analysis).
We mark tasks that we have addressed but for which we believe our model is not mature
enough with an half empty black star (⋆). These are constrained and unconstrained
layer score orchestration tasks (Chapter 8, Tasks T6 and T7), the automated creation
of layer scores from orchestral score for building our corpus (Appendix B, Task T4),
and orchestration from piano (Section 4.2, Task T1, obtained through combinations of
algorithmic and manual Task A3, T3, P3, and T7).
We identify those tasks that appear to be approachable with little modifications of our
models but have not been addressed with a light bulb (). These are the constrained
and unconstrained generation of layer scores (Tasks U3, C3, and C4), the melody and
harmony constrained symphony generation (Task C2) that could be achieve by chang-
ing the sampling scheme of the existing models, instrument classification (Task P5),
and unconstrained reorchestration (Task S1).
Finally, tasks that have been addressed by hand in this thesis are marked with a
paper-and-pen symbol (L). We have constructed layer scores from piano, we have
performed taxture-constrained orchestration, and we have done segmentation for the
Angeles project (Chapter 7, Tasks T3, T7 and A3). We have annotated texture in scores

66



4.1. Reclassifying Orchestration Tasks in MIR

(Chapter 5, Task A1a) and refined by hand some automatically constructed layer scores
for our corpus (Appendix B, Task T4).

Task Input/Constraints Output

Creation of New Music Material (Unconstrained) (U)

U0. Multi-Track Music Generation
Polyphonic composition

– Multi-Track Score [79][111][25]
[109][148]
(surveys) ⋆

U1. Unconstrained Symphony
Generation
Symphonic composition

– Orchestral Score [158] ⋆

U2. Piano Score Generation
Piano composition

– Piano Score [79][111][25]
[109][148]
(surveys)

U3. Layer Score Generation
Abstract composition

– Layer Score

Constrained Creation of New Music Material (C)

C1. Harmony Constrained Symphony
Generation
Harmony realization for orchestra

Chord Sequence Orchestral Score [158][95] ⋆

C2. Melody and Harmony Constrained
Symphony Generation
Melody and harmony orchestral arrangement

Chord Sequence
+ Melody

Orchestral Score [95][283]

C3. Harmony Constrained Layer Score
Generation
Abstract harmony realization

Chord Sequence Layer Score

C4. Melody and Harmony Constrained
Layer Score Generation
Abstract melody and harmony arrangement

Chord Sequence
+ Melody

Layer Score

C5. Audio-targeted Orchestration
Reproduce a target sound by layering orchestral
instruments

Target Audio Orchestral Score [214][33][229]
[32][75][169]
[2][30][29][36]

C6. Perception Controlled Orchestration
Produce a desired perceptual effect through orches-
tration

Chord Sequence
+ Target Perception

Orchestral Score [187]

Music Inpainting (Completion Tasks) (I)

I1. Orchestral Inpainting
Generate missing parts of an orchestral score

Orchestral Score
(with gap)

Orchestral Score [95]

I2. Layer Score Inpainting
Generate missing parts of a layer score

Layer Score
(with gap)

Layer Score [95]

“Traditional” Orchestration Transformations (T)

T1. Orchestration (from Piano) Piano Score Orchestral Score [51](live)
[198][179]
[284] ⋆+L
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T2. Piano Reduction Orchestral Score Piano Score [120][254][199]
[115][284]

Transformation Sub-tasks with a Layer Score (T)

T3. Layer Reduction (from Piano)
Construction of a layer score (from piano)

Piano Score Layer Score L

T4. Layer Reduction (from Orchestral
Score)
Construction of a layer score (from orch. score)

Orchestral Score (+
Texture Annotations)

Layer Score L ⋆

T5. Piano Arrangement (from Layer
Score)

Layer Score Piano Score

T6. Layer Score Orchestration Layer Score Orchestral Score [95] ⋆

T7. Texture-constrained Orchestration
(from Layer Score)
Orchestration of a layer score following a plan

Layer Score
+ Orchestration Plan

Orchestral Score L ⋆

Planning Tasks (P)

P1. Orchestration Plan Generation
Structure and timbre composition

– Orchestration Plan

P2. Orchestration Plan Completion
Timbre transition and structure completion

Orchestration Plan
(with gap)

Orchestration Plan

P3. Orchestration Texture Planning
Assign layers to instruments (one-to-many)

Layer Score Orchestration Plan ⋆

P4. Orchestration Planning
(without Layer Score)
Assign layers to instruments (one-to-many)

Piano Score
+ Texture Annotations

Orchestration Plan

P5. Instrumentation
(Instrument Classification)
Assign notes to instrument

Multitrack Score
(w/o instrument
labels)

Instrument Labels [158][67][105]
[133]

Analysis Tasks (A)

A1a.Orchestral Texture Analysis Orchestral Score Texture Annotations [97][42] L

A1b.Orchestral Blends Detection
Perception of orchestral blends

Orchestral Score Orchestral Blends
Positions

[11] ⋆

A2. Piano Texture Analysis Piano Score Texture Annotations [49][47][48]

A3. Segmentation Piano Score
or Orchestral Score

Segmentation L

Self-transformations (S)

S1. Unconstrained Reorchestration
Propose an alternative orchestration

Orchestral Score Orchestral Score [158][51](live)
[284][206]
[150]

S2. Texture-constrained Reorchestration
Reorchestration following a plan

Orchestral Score
+ Texture Annotations
+ Orchestration Plan

Orchestral Score

S3. Re-arrangement for Piano
Simplification/Variations/Rearrangement

Piano Score Piano Score
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S4. Layer Score Enrichment
Composition of new parts

Layer Score Layer Score

Table 4.1.: MIR tasks and sub-tasks related to orchestration and orchestration analy-
sis. The algorithmic MIR task name is printed with normal style fonts and
the corresponding traditional human task (or a description of the task) is
reported in small italics. Tasks are classified by their input and output. In
the last column we cite papers that have addressed or discussed the task.
We also presented and implemented some tasks in [149], [165], and in this
manuscript. Stars represent tasks modeled (⋆) or addessed (⋆) in this thesis.
Tasks that appear to be approachable with little modifications of our models
are identified by a light bulb (), and tasks addressed by hand are marked
with a paper-and-pen symbol (L).

Creation of New Material and Inpainting (Tasks U, C, I, P) While some people may
wish to generate complete symphonic orchestral music (Task U1 on Table 4.1), a more
fruitful co-creation may involve the generation starting from existing material, such
as chord progressions, melodies, or incomplete scores (Tasks C1, C2, and I1). Similar
tasks exist for the piano score (see for example [102]), and can be introduced for the
layer score (Tasks C3, C4, and I2). When it is performed by a human alone, it is called
composition or arrangement. When it is performed autonomously by an algorithm, it
is called constrained/unconstrained generation, automatic arrangement, or inpainting.
In co-creative composition, the human and the algorithm collaborate in the creative
process. A first strategy for co-creative collaboration consists is splitting the task into
sub-tasks that can be performed by the different agents. Another one consists in im-
plementing a feedback loop in which the human provides the input and reviews the
output of the algorithmic generation. Alternatively a process in which both actors are
involved with different roles could be designed.
Some particular constrained generation tasks are those that involve audio and specific
target perceptual effect as control input. Indeed, late-romantic or modern styles have
tried to reproduce timbral effects or actual sounds (bells in Wagner, massive texture in
Debussy, birds in Messiaen), as modeled by the target-based orchestration tasks (Tasks
C5 and C6). In this context, many studies have been proposed on “Audio-targeted
Orchestration”[214, 33, 229, 32, 75, 169, 2, 30, 29, 36, 37]. Miranda et al. [187] have
instead proposed an interactive Computer-Aided Orchestration system that generates
orchestrations to match verbal timbre descriptors.
For the remaining objects, unconstrained generation of texture annotations discon-
nected from a score does not make a lot of sense, but the generation of an orchestration
plan could be part of a composition process, in which planning timbres and sounds
with respect to structure comes before harmony and melody (Tasks P1 and P2). In
the table, we have placed them in the planning section. For example, it might be the
case for ambient music, more based on the evolution of sonic material, or for mod-
ern and contemporary western classical music in which timbre is the core (see for
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instance Schoenberg’s Klangfarbenmelodie [239] and Anton Webern’s Concerto for nine
instruments, Op. 24).

Figure 4.2.: Creation of new material: scores and plans can be generated freely or
with constraints. Examples of constraints are a given melody or chord
sequence, a target audio, or a desired perceptual effect. Table 4.1 reports
the most important examples, but all combinations of constraints shown by
the arrows in the figure could in principle be explored.

Transformation Tasks (Tasks T, P, S) We put in this category all tasks which produce
one of the defined objects, having as input one or more of them (Figure 4.3). Piano
reduction and orchestration from piano are symmetrical tasks in traditional practice
(Tasks T1 and T2). Orchestration from piano usually requires “de-pianotizing” the
piano music, including voice separation [166] or texture analysis [49], while Piano re-
duction requires “de-orchestrating” the orchestral music. In both cases, the tasks can be
rethought with layer scores and orchestration plans as intermediate objects. One group
of tasks involves the construction of a layer score from a piano or orchestral score (Tasks
T3 and T4), or the opposite operation, with or without an orchestration plan (Tasks T5 -
T7). Another group involves planning the orchestration (Tasks P3 - P5). Other tasks in-
volve regenerating orchestral content over an existing piece, either partially (inpainting,
Task I1) or completely (reorchestration), with or without constraints (Tasks S1 and S2).
Other “self-transformations” (the transformation of an object into an object of the same
kind) are those for the piano score, the layer score, and the orchestration plan (Tasks S3
and S4).

Orchestration Analysis Tasks (Tasks A) The last group of tasks contain those related
to the analysis of orchestration (Figure 4.4), involving the identification of certain tech-
niques in orchestral scores. The list that we provide is not exhaustive, but touches the
main tasks explored in this thesis. One example is the analysis of orchestral texture
(and, analogously, piano texture), producing annotations of layers as detailed in Sec-
tion 3.1 (Task A1a and A2). We include piano analysis tasks here, as they can be useful
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Figure 4.3.: Transformation tasks: transformations allow to pass from one or more ob-
jects to another one. Those tasks are divided into transformation tasks and
sub-tasks (T), planning tasks (P), and self-transformations (S) that transform
one object into an object of the same kind (Table 4.1).

steps in an orchestration process. The identification of segments and formal sections in
piano or orchestral scores is another of these analysis tasks (Task A3). Chapter 6 will
detail more the orchestral blend modeling and the related task of detecting possible
perceived blends in scores (Task A1b).

Figure 4.4.: Analysis tasks have the goal of identifying certain objects and techniques
(like layers, segments, and orchestral blends) in scores. This is a non-
exhaustive representation of some possibilities.

4.2. The Case of Computer-Assisted Orchestration (Task
T1)

In this section we present a process for computer-assisted orchestration that combines
ideas from music theory and computer science to facilitate the collaboration between
artists and computational algorithms to orchestrate existing music pieces. The objective
is to perform Task T1, going from a piano score to an orchestral score, in a co-creative
and interactive way, allowing both humans and algorithm to take part in high-level and
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detailed decision-making. In order to achieve that, the task is split into sub-tasks, (Tasks
A3/T3, P3, and T7) accommodating both human and algorithmic contributions in
distinct roles. The different sub-tasks can be performed sequentially and independently
by human and algorithmic agents, but it is more interesting to design each step allowing
the possibility of interaction.

4.2.1. A Process in Three Steps
This structured approach unfolds across three pivotal steps (Figure 4.5) aimed at the
creation of different intermediate objects and finally of the orchestral score. In this
section we present the three steps, and how they can be separated into further sub-
tasks, without assigning tasks to agents. The exact processes can vary a lot, based on
which agent is taking which task, on the level of musical training of the humans, on the
nature of the computational models employed, and on the ways of interaction between
actors and objects.

Figure 4.5.: Co-creative orchestration process in three steps: (1) constructing a layer
score from the piano score, (2) planning the instrumentation of each layer,
and (3) combining the layer score and orchestration plan to write an or-
chestral score. Iterative refinement is allowed for the layer score, the or-
chestration plan, and the final orchestral score, meaning that the agents can
update the objects until a satisfying version is obtained. Feedback can also
be implemented (dotted lines), allowing agents to modify previously taken
decisions in a later phase of the process.

(1) Construction of the Layer Score Our proposed creative process starts from an an-
alytical perspective, with an in-depth deconstruction of the composition to orchestrate.
It is a is a creative analysis [7] task in which the analysis is a catalyst for the rest of
the orchestration process. Particularly pertinent in this phase is the identification of
the different voices and of the section boundaries between the evolving textures in the
piece. The result of this phase is the layer score, the abstract score which contains all
the separated voices (layers) present in the original piece, analyzed for their role in the
composition (Task T3). The agents are also free to creatively complete the layer score by
modifying some of the layers or by adding new ones while carefully respecting the style
of the author. There are some analytic sub-tasks that are performed to obtain a layer
score (Figure 4.6), like the segmentation of the piece (Task A3) and the identification
of layers in the piano score. Those sub-tasks do not need to be completed explicitly

72



4.2. The Case of Computer-Assisted Orchestration (Task T1)

(especially when they are done by an expert human), but a good layer score should
contain all the information about the segmentation of the piece and, obviously, about
the layers.

Figure 4.6.: The construction of the layer score involves analyzing the piano score to
identify segments and layers, either implicitly or explicitly.

(a) Piano Reduction. Arr. by Franz Liszt, ed. Breitkopf & Härtel

(b) Layer Score. 3 layers

Figure 4.7.: First eight measures from the first movement of Symphony No. 9 by
Beethoven, op. 125. Piano reduction and layer score.

As an example, we can imagine that we want to re-write the orchestration of Beethoven
Symphony No.9, starting from Liszt’s piano reduction. We begin from the first seg-
ment, which is the beginning of the symphony, already used as an example in the
previous chapter and reproduced here in Figure 4.7. We identify two main elements:
the alternated triplets, and the motif of the descending arpeggio. We can write these
two voices that we have identified into separated staves in a score, and we can transform
the alternated triplets into a figure with repeated notes. This would give us a first layer
score, with only the Front and Rhythm layers. Since we are free to iterate, we can add
other layers to this score if we are careful in respecting the style of the author. For
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example, here we can add some sustained notes that reproduce the same harmony as
in the rhythmic layer, which gives the Harmony layer.

(2) Orchestration Texture Planning The second phase of the process consists in the
creation of an orchestration plan, outlining the instrumentation of each layer across
distinct sections of the piece (Figure 4.8, Task P3). A possibility is to let the human
select the most suitable orchestration plan among a large collection of plans that are
generated by a model for the same piece. Also, we can make plans with dependence
on a given set of parameters (like overall loudness and instrumental density), so that
they can be adjusted a posteriori. A model to generate orchestration plans is presented
in Chapter 7.

Figure 4.8.: An orchestration plan associates to every segment si a segment instru-
mentation SIsi containing the layer instrumentations for every layer in the
segment.

SIs1 =


(λFront, {Vln1, Vla, Cb}),
(λRhythm, {Vln2, Vc}),
(λHarmony, {Hrn1, Hrn2, Cl})


Figure 4.9.: Segment instrumentation of segment s1 (first eight measures) of the first

movement of Symphony No.9 by L. van Beethoven, op. 125. Three layers
λFront, λRhythm, and λHarmony are mapped to mutually disjoint sets of instru-
ments.

As an example, Figure 4.9 shows the segment instrumentation for the first segment s1
from Beethoven Symphony No.9.

(3) Texture-constrained Orchestration from the Layer Score following the Plan Fi-
nally, the orchestral score is constructed, by writing the notes contained in the layer
score for the instruments indicated by the plan, taking care of the instruments ranges
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and playing techniques (Figure 4.10, Task T7). It is at this point that some of the de-
cisions taken in previous steps might turn out as unreasonable and not feasible. A
feedback operation is allowed, and the layer score and orchestration plan can be modi-
fied to solve the problems encountered during the creation of the final orchestral score.
The final product is further refined to add or adjust some details such as dynamics and
expressive indications that might not have been completely considered before.

Figure 4.10.: The layers from the layer score are re-written for the instruments of the
orchestra, following the prescriptions from the orchestration plan, and
adapting them to the instruments’ ranges and playing techniques. The
lower part of the figure shows the construction of the orchestral score for
Beethoven Symphony No. 9.

In the lower part of Figure 4.10 we see, for example, the construction of the orchestral
score for the beginning of Beethoven 9th Symphony starting from the layer score and
following the instrumentation prescribed by the orchestration plan in Figure 4.9.

4.2.2. Ways of Interaction and Specific Implementations
Thanks to the identification of these three steps with clear inputs and outputs, we can
say that, independently from the specific implementations, the process enables the
collaboration of a human artist with computational algorithms. The most immediate
type of interaction is the use of material produced by humans as input for algorithmic
processing (and vice-versa). The human can also interact by selecting and customizing
machine outputs, by controlling generation parameters, or by mixing together different
outputs. The opposite approach could be taken, with algorithms employed to review
the material produced by the human, to check for obvious mistakes, and to propose
alternative solutions. Finally, for some tasks, a process which requires the collaboration
of the human and the AI as colleagues can be envisioned.
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Almost every task in the framework could in principle be performed either by hand
or by a computational model, from simple knowledge based AI to more sophisticated
Large Language Models (LLMs). Some of these tasks are well studied in literature,
such as voice separation in piano scores, some others have been explored and tested for
western classical and romantic style orchestration in the context of this thesis (Chap-
ters 7 and 8). Some of them remain to be explored in further studies (Chapter 9).
For the Angeles project (see [165] and Chapter 7) we have experimented with a prob-
abilistic Markov model to generate orchestration plans that have then been used to
complete a co-creative orchestration that has been played in a concert in Bolivia.
Also, several experiments have been made on token-based LLMs to perform several
tasks, among which the constrained generation of orchestral scores. Those experiments
have given mixed results and are documented in Chapter 8.

76



Part II.

Orchestral Music Analysis





5. A Multi-Modal Corpus of First
Movements of Symphonies in the
Classical Style

In this chapter we introduce a corpus consisting of first movements of Symphonies in
the western classical style [230], composed between 1779 and 1824 by the masters of
the “first Viennese school” (Haydn, Mozart, and Beethoven). The corpus collects a
selection of 24 first movements of symphonies in sonata form [39, 108], together with
the abstract models described in Chapter 3. In a first phase, a corpus of texture anno-
tations at a measure level of melodic, rhythmic, harmonic, and mixed layers, has been
created and openly released [149]. Those annotations follow the taxonomy presented
in Section 3.1 and the syntax detailed in Appendix A. In a second phase, layer scores
(Section 3.2), automatically produced from the annotated orchestral scores, have been
added to the corpus. In this context, the texture annotations can be interpreted also as
orchestration plans (Section 3.3) that prescribe the instrumentation to go from the layer
scores to the original orchestral scores.

This chapter is divided into three sections: the first one is detailing the content
and the format of the corpus (Section 5.1), including the challenges of visualizing
it on the Dezrann platform, the second one is reporting results of statistical analysis
on the corpus (Section 5.2), and the last one draws some conclusions (Section 5.3).
The corpus is available under open-source licenses through a git repository at http:
//www.algomus.fr/data/, and deposit on the recherche.data.gouv data warehouse
is underway.

5.1. Corpus Content: Scores, Annotations, and
Recordings

This section presents the content of the multi-modal corpus. For each piece, the corpus
contains different objects, even though not all formats are always available. A summary
of the availability state of the corpus is presented in Table 5.1.
What follows is a presentation of the different material, including scores (Section 5.1.1),
texture annotations (Section 5.1.2), sonata form annotations (Section 5.1.3), and layer
scores (Section 5.1.4). We then show how we can visualize annotated scores with
synchronized public domain recordings through the Dezrann web application (Sec-
tion 5.1.5).
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symphony (first movement) orchestral score texture layer score recording synch

Mozart

Symph. 32, K. 318 - ○ - - -
Symph. 33, K. 319 - ○ - En. Ch. Orch. (PD) -
Symph. 34, K. 338 - ○ - - -
Symph. 35, K. 385, Haffner - ○ - Berl. Phil. (PD) -

1756 – 1791 Symph. 36, K. 425, Linz - ○ - Bamb. Symph. (PD) -
Symph. 38, K. 504, Prague MusicXML, mscx (CC0) ○ - Bamb. Symph. (PD) -
Symph. 39, K. 543 MusicXML, mscx (PD) ○ - Bamb. Symph. (PD) -
Symph. 40, K. 550, Great G minor MusicXML, mscx (CC0) ○ auto (MIDI), manual (expos.) Bamb. Symph. (PD) -
Symph. 41, K. 551, Jupiter MusicXML, mscx (CC0) ○ auto (MIDI) Bamb. Symph. (PD) -

Haydn

Symph. 99 **kern (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) ○
Symph. 100, Military **kern (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) ○
Symph. 101, The Clock **kern (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) ○

1732 – 1809 Symph. 102 **kern (OTH) ○ - R. Phil. Orch. (PD) ○
Symph. 103, Drumroll **kern (OTH) ○ - R. Phil. Orch. (PD)
Symph. 104, London **kern (OTH) ○ auto (MIDI) R. Phil. Orch. (PD)

Beethoven

Symph. 1, op. 21 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -
Symph. 2, op. 36 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -
Symph. 3, op. 55, Eroica MusicXML, mscx (OTH) ○ - R. Phil. Orch. (PD) -
Symph. 4, op. 60 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -

1770 – 1829 Symph. 5, op. 67 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -
Symph. 6, op. 68, Pastoral MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -
Symph. 7, op. 92 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -
Symph. 8, op. 93 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) -
Symph. 9, op. 125 MusicXML, mscx (OTH) ○ auto (MIDI) R. Phil. Orch. (PD) - complete

19 24 14 22 4 4

Table 5.1.: The corpus contains 24 first movements of Haydn, Mozart, and Beethoven
symphonies. The table reports the availability of different material for each
symphony, together with licenses. An updated version of this table is avail-
able in the corpus repository (http://www.algomus.fr/data/). The record-
ings of Mozart’s symphonies are by different orchestras: the English Cham-
ber Orchestra (En. Ch. Orch.) conducted by Colin Davis (1962), the Berliner
Philharmoniker (Berl. Phil.) conducted by Karl Böhm (1960), the Bamberger
Symphoniker (Bamb. Symph.) conducted by Joseph Keilberth (1956, 1959,
1963). The recordings of Haydn’s symphonies come from the album “The
Salomon Symphonies” (Volume Two) by The Royal Philharmonic Orchestra
(R. Phil. Orch.) conducted by Sir Thomas Beecham (1960). The recordings
for Beethoven’s symphonies come from the album “The Nine Symphonies Of
Beethoven” by The Royal Philharmonic Orchestra (R. Phil. Orch.) and The
Beecham Choral Society conducted by René Leibowitz. Scores and record-
ings are redistributed with their original license as indicated in the table:
Creative Common 0 (CC0), Public Domain (PD), or others (OTH).
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5.1.1. Orchestral Scores
Scores for the 24 first movements of symphonies have been gathered from KernScores1,
MuseScore2 and ClassicalArchives3. When allowed by the original license (which is
not the case for all of the scores), they have been redistributed along with the corpus in
the repository. Score files are in **kern, MuseScore, or MusicXML format. MIDI files
converted from the scores, and for which conversion errors have ben corrected, are also
made available.

5.1.2. Orchestral Texture Annotations
Texture annotations follow the taxonomy presented in Section 3.1, and describe how the
instruments are grouped into layers at a measure-level. Layer roles are also described
(either melodic, rhythmic accompaniment, harmonic accompaniment, or mixed) fol-
lowing Benward and Saker [18]. Specialized subcategories for rhythmic support layers
like sparse, arpeggio, and scale are available. The relationship between the instruments
inside a layer (unison, parallel motion, or homorhythm) is also described. Furthermore,
we annotate some “meta-layer” phenomena, like call and response schemes. The an-
notations are stored both as text files (a description of their syntax can be found in
Appendix A) and as Dezrann json files [87], that allow to display the annotations over
the scores on the Dezrann4 web platform.

5.1.2.1. Annotation Process

The annotation and reviews were done by hand on scores, both on paper and on the
Dezrann web annotation platform [87], that was used to share annotations and to pro-
vide feedback to the annotators. Authors had access to recordings, during the process,
even though no reference recording had been chosen, and the annotations were made
in the spirit of privileging the score information. This is not a perception study, but the
texture model describes the cues to certain perceptive phenomena (like blending and
streaming) that are present (planned or not) in the score.
The few rules that form the annotation guidelines were designed after preliminary an-
notations and discussions between the annotators and the reviewers of the annotations,
which are also the authors of the publication [149], to resolve some difficult cases. The
strategy of doing a measure-level modeling introduces some “rounding” approxima-
tion, but at the same time helps avoiding difficulties in defining precise boundaries for
each layer. More importantly, such measure-level annotations still imply looking also
at the other instruments and at neighboring measures:

• The definition of layers can be affected by other instruments. As an example, the
presence or absence of a high register melodic layer can affect the classification of

1https://kern.humdrum.org/
2https://musescore.com/
3https://www.classicalarchives.com/
4https://www.dezrann.net/
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a certain pattern in the bass as rhythm or as melody. This, also considering that
there might be no melody in some portions of a piece.

• Annotations favor longer layers (several measures), considering layers as formed by
sequential grouping. However, if a melody or a rhythm is logically finishing on
the first beat of a certain measure, the corresponding layer is not extended to that
measure (as the layers of measures 41-42 on Figure 3.9).

Annotations have been reviewed primarily to enforce coherence of each annotation, to
correct obvious mistakes, and to discuss some groupings.

Annotators’ Background The annotators and the reviewers of the annotations are my
two supervisors (M. Giraud and F. Levé), another member of the Algomus team (D.-
V.-T. Le), and myself. We are researchers and PhD students in computer music, with
an academic background in computer science and with a music high-school training
in flute, violin, piano, music theory, and music analysis. One of us has a prize in
orchestration from the Conservatoire de Roubaix (France). We recognize that the fact
that the annotators coincide with the corpus curators can lead to some bias, but we
argue that the annotation of the corpus was a necessary process to the design and
refinement of the annotation language itself. We are vigilant in controlling bias, and
we decided to study annotator diversity (see next section) before the reviewing process.

5.1.2.2. Measuring Annotation Diversity

To measure annotation diversity, several annotators independently analyzed the first
movement of Mozart Symphony No. 36 (two annotators) and the exposition in the first
movement of the Haydn Symphony No. 99 (three annotators), and these annotations
have been compared before any review.
The choice of the grouping strictly coincide for at least two annotators on 70% of the
measures in Haydn 99th and 48% in Mozart 36th. The main causes of disagreement
are splitting a layer in multiple ones or different boundaries identification for a layer.
We can compare the pairwise combinations of the instruments in a measure, obtaining
that at least two annotators agree on 92% of those pairs in Haydn 99th and on 67% in
Mozart 36th.
Focusing on the main roles (gathering all the rhythm sub-roles), the three (resp. two) an-
notators strictly agree on the role of 64% of instruments within a measure for Haydn 99th
(resp. 76% for Mozart 36th). Here the disagreement is often on the decision of con-
sidering a phrase as either a melody or a rhythmic accompaniment, like the first violin
part in Figure 5.1. However, there may be ambiguities in identifying layers and roles,
both in mixed roles (such as between mel+rhythm and rhythm) and in not clearly affirmed
roles (no role annotation for one of the annotators, as in 13% of the corpus). Taking
into account these cases, agreement reaches up to 77% for Haydn 99th and 82% for
Mozart 36th.
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Figure 5.1.: Allegro Vivace in the first movement of Symphony No. 102 by Haydn, mea-
sures 40-43, from edition [212] (already shown in Figure 3.9). The role of the
first violin is ambiguous: it could be annotated both as melody or rhythmic
accompaniment.
 http://algomus.fr/fm/haydn102-40.mp3
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This study validates that our model and syntax are effective for identifying various
viewpoints and ambiguous fragments. Additionally, our model demonstrates strong
agreement across the majority of layers, facilitating corpus analyses.

5.1.3. Sonata Form Annotations
All 24 first movements of symphonies in the corpus are in sonata form, even if certain
movements exhibit unconventional structures, like Mozart 32nd symphony in which
sonata form is split among the first and the third movement. We therefore annotate
primary and secondary thematic zones (P/S), conclusions (C), development (D), and
the recapitulation (P’/S’/C’). These annotations are found in the same text files as the
texture annotations, and are used to study the relationship between orchestration and
form.

5.1.4. Layer Scores
A preliminary algorithm for the automatic creation of layer scores starting from anno-
tated orchestral scores was developed during this thesis. The objective was to create a
collection of layer scores aligned with the orchestral scores in the corpus, facilitating
research on orchestration using AI (see the experiments with the Transformer model
presented in Chapter 8). The current algorithm (Algorithm 1, reported in Appendix B)
cannot be considered mature. We have decided to manually review and curate the
output layer score for one excerpt (the exposition from Symphony No. 40 by Mozart)
in order to identify the most important weaknesses and flaws. More details on the
research in constructing layer scores are reported in Appendix B.
The corpus now contains automatically generated layer scores for 14 of the movements,
together with the manually curated layer score for the exposition of Mozart’s 40th
symphony.

5.1.5. Synchronizing with Recordings and Visualizing the Corpus on
Dezrann

Dezrann is an open-source web platform developed by the Algomus team that allows to
share music and music analyses in the form of scores, images, audio/video/waveforms,
and annotations [14]. It now contains over 10 curated music corpora of diverse origin,
including the one presented here. Among other things, Dezrann allows to display
different sets of annotations over music scores, to synchronize one or more audio
recordings to a score, and to playback the recording while following the annotated
score. All this is performed seamlessly in a web browser, without the need of any
plugin or external software.
Regarding this corpus in particular5, we display annotated orchestral scores, synchro-
nized to public domain recordings. Figure 5.2 shows a screen capture of Dezrann

5https://dezrann.net/explore/classical-symphonies
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displaying the annotated Symphony No. 101 The Clock by Haydn. Displaying such
large symphonic scores with up to 15 staves was a big challenge for the development
team.
The recordings have been gathered from Internet Archive6 and IMSLP7. Regarding
Mozart’s symphonies, they come from different orchestras: the English Chamber Or-
chestra (En. Ch. Orch.) conducted by Colin Davis (1962), the Berliner Philharmoniker
(Berl. Phil.) conducted by Karl Böhm (1960), the Bamberger Symphoniker (Bamb.
Symph.) conducted by Joseph Keilberth (1956, 1959, 1963). The recordings of Haydn’s
symphonies are taken from the album “The Salomon Symphonies” (Volume Two) by The
Royal Philharmonic Orchestra (R. Phil. Orch.) conducted by Sir Thomas Beecham
(1960). The recordings for Beethoven’s symphonies are taken from the album “The Nine
Symphonies Of Beethoven” by The Royal Philharmonic Orchestra (R. Phil. Orch.) and
The Beecham Choral Society conducted by René Leibowitz. The synchronization of the
score with the recordings has been done (for the symphonies by Haydn, see last column
of Table 5.1) through a collective effort of the Algomus team, using the synchronization
tool from the platform.
Audio files and synchronization files are made available through the repository.

Figure 5.2.: Visualization of Symphony No. 101 The Clock by Haydn in Dezrann, mea-
sures 2-31. Colored boxes highlight different orchestral layers, while the
full texture is described in the boxes above the score.

6https://archive.org/
7https://imslp.org/

85

https://archive.org/
https://imslp.org/


5. A Multi-Modal Corpus of First Movements of Symphonies in the Classical Style

5.2. Statistical Analysis of the Corpus

We now highlight and discuss properties of such a corpus of classical and early-romantic
symphonies concerning layer roles and relations (Section 5.2.1), instrument association
(Section 5.2.2), instrument roles (Section 5.2.3), and the link between orchestral texture
and form (Section 5.2.4).

5.2.1. Layer Roles and Relations

In Table 5.2 we report the percentages of appearances of layer roles in the corpus. Those
numeric values shall be read as the ratio of measures in the corpus where a layer with
such role/sub-role is present in the annotations.

Roles and Sub-Roles Percentage of Measures in the Corpus
Melody 68%
Rhythmic accompaniment 76%
Repeated notes 24%
Oscillation or “Batterie” 11%
Arpeggio 15%
Scale 8%
Sustained Harmony 66%
Mixed
Decorative melody 4%
Sparse elements or Sparse chords 30%

Table 5.2.: Percentages of measures in the corpus where a layer with a certain role/sub-
role is present. The total does not sum up to 100% since multiple layers can
be present in the same measure.

Table 5.3 details the percentages of layers which have an inside-layer relation of homory-
thm, parallel motion, or unison/octave doubling. Regarding meta-layers, we recorded
an average of 15.3 “Call-and-response” (CR) schemes per movement.

Relations Percentage of Layers in the Corpus
Homorhythm 24%
Parallel Motion 9%
Octave or Unison Doubling 29%

Table 5.3.: Percentages of inside-layer relations on the total number of layers.
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5.2.2. Instrument Association
In the corpus we observe that instruments of the same family (woodwinds, brass,
strings) are more likely to play in the same layers (Figure 5.3, lower triangular part).
Brass is more combined with woodwinds than strings: the string section is indeed
rarely perceived as blended with the brass section [223, p. 61]. Timpani are more often
associated with brass than with other instruments ([82, p. 46], [223, p. 117]). The pair
of instruments that can be found most often together in the same layer are cellos with
contrabasses (91% of the measures where both are playing).
The difference between instrument families is very significant in call-and-response (CR)
schemes (Figure 5.3, upper triangular part). The alternation involving instruments of
different families accounts for more than 70% of the annotated CR (including 48% of
alternation between strings and woodwinds), whereas intra-family CR are below 25%.
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Figure 5.3.: Association of instruments on 19 movements in the corpus. For each pair of
instruments, the cells show the ratio of measures when they are in the same
layer to the number of measures when are both playing (bottom left) or
when they are both playing in a call-and-response (CR) scheme (top right).
As an example, flutes (Fl) and timpani (Timp) are in the same layer in 24%
of the measures when they are both playing, compared to 66% when one
considers only the measures in CR passages when they are both playing.

5.2.3. Instrument Roles
Strings play 84% of the measures in the corpus, woodwinds 57%, and brass 45%.
The distribution of roles among instruments confirms common knowledge that the
instruments and their families play different roles (Figure 5.4, left).
The melody is mostly played by strings (73% in Mozart (M), 66% in Haydn (H) 53%
in Beethoven (B)) – especially, as expected, by first violins (Vln1, 28% (M), 26% (H),
18% (B)). Note that lower instruments also take a significant part in melody: second
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Figure 5.4.: Distribution of instruments by role, composer, and piece. In each family,
instruments with highest register are represented with lighter shades. Each
area represents the number of measures in which an instrument plays the
corresponding role. (Left) All roles are normalized on the total number of
measures from each composer (M: Mozart, H: Haydn, B: Beethoven), but
each instrumental part is counted on its own. For example, first violins
(Vln1) play in a melodic bar 61% of the measures in Mozart movements in
the corpus, and the number of melodic measures (considering all instru-
ments) is 222% of the number of measures in Mozart movements. (Right)
Focus on the melodic roles on each movement of each composer, normalized
on the total number of melodic measures for each movement.

violins (Vln2), viola (Vla), cellos (Vc), and contrabasses (Cb) account for 63% of the mel
taken by strings. Most of the time, they play melody either in unison or multiple-part
harmony with Vln1, but also, in 9% of the cases, they play the melody without Vln1. On
the other hand, the harm role is mostly on woodwinds (46%) and brass (24%). The horn
is particularly used in harm (47% of all layers with the horn, compared to an average of
21% for the other instruments) [219, p. 50]. Timpani play rhythm and sparse chords.
They also play frequently in tutti passages (34% of layers, compared to 19% for the
other instruments, data not shown).
The roles can also be studied among the composers or even the pieces. For example,
Figure 5.4 (right) shows the distribution of melodic layers among the instruments. In
romantic music, winds tend to have a more important place in melody [219, p. 70]: the
proportion of wind instruments in melodic layers raises from about 30% for Mozart
and Haydn to 47% (± 5%) in Beethoven. This rise is significantly greater than the rise
of woodwinds and brass within all layers (42% M, 44% H, 48% B, data not shown).

5.2.4. Texture and Form
Instrumentation and texture are linked to form [260, 250]. Considering movements
of the corpus that strictly follow a sonata form, we evaluated the similarities between
sonata form sections based on their textural roles composition and their instrumenta-
tion. We consider the L2 distance, normalized between 0 and 1, between two vectors
containing the distribution of roles in two sections of the sonata form.
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Figure 5.5.: Textural (left) and instrumental (right) disparity of main sonata form sec-
tions (P/S: Primary/Secondary thematic zones, C: Conclusion, Dev: devel-
opment). P’/S’/C’ are in the recapitulation. The cells represents the mean
of euclidean distance between vectors representing the occurrence of each
role (left) or of each instrument (right) within each section.

The sections having the most similar textures are primary theme zones from the expo-
sition (P) and the recapitulation (P’) (distance of 0.022 ± 0.005), and secondary theme
zones from the exposition (S) and the recapitulation (S’) (0.022± 0.009). These P/P’ and
S/S’ couples are significantly more similar that the other couples of sections (average
distance of 0.046 ± 0.003, Figure 5.5, left). Remarkably, this textural similarity between
the exposition and the recapitulation is more pronounced than the instrumental simi-
larities (Figure 5.5, right).
The recapitulation may be indeed a re-instrumentation of the exposition, but still keep-
ing similar texture. As an example, a fragment of the first movement in the Beethoven
5th symphony in the exposition (measures 75-82, Figure 5.6a) had three layers with the
melody on the first violins, whereas the related fragment in the recapitulation (mea-
sures 323-330, Figure 5.6b) has the same layers but with a call-and-response on the
melody between first violins and some woodwinds.

5.3. Conclusions
In this chapter we presented a corpus of 24 first movements of late Haydn, Mozart,
and all Beethoven symphonies, with orchestral scores, 7900+ measure-level orchestral
texture annotations, sonata form annotations, layer scores, and synchronized public
domain recordings. This corpus has served as the testing ground for all ideas re-
lated to modeling orchestration (Chapter 3). The concept of orchestral layer has been
developed during the annotation of this corpus, with categories and subcategories for
layer roles emerging naturally throughout the process. The concept of layer score and
orchestration plan have also been tested on the symphonies. A more detailed study
on layer scores, on the characteristics they should have, and on their evaluation is still

89



5. A Multi-Modal Corpus of First Movements of Symphonies in the Classical Style

(a) Exposition (measures 75-82)

(b) Recapitulation (measures 323-330)

Figure 5.6.: Allegro con brio of Symphony No. 5 by Beethoven, second thematic zone in
the exposition (a, measures 75-82) and in the recapitulation (b, measures
323-330). In the exposition, the melody (yellow, very light) is played by the
first violins. In the recapitulation, it is divided to form a Call-and-response
scheme (CR) between the first violins, the flutes and the first clarinet in B♭.
The rest of the orchestration remains unchanged: an harmonic layer (red,
dark) is played by the bassoons, the second violins, and the violas, while the
basses (cellos and contrabass) play the symphony’s characteristic rhythmic
motive (blue, light).
 http://algomus.fr/fm/beethoven5-75.mp3

 http://algomus.fr/fm/beethoven5-323.mp3
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necessary, and it is left to future work.
Our statistical analyses on the texture annotations confirm the different roles of the
instruments and their families in this corpus, in particular, the use of strings and the
increasing importance of winds in Beethoven’s works, as well as the link between tex-
ture and form. These results may seem expected. As symbolic encoding of the full
orchestra scores are available for these pieces, this corpus may enable further empirical
studies on orchestration, involving scientists with more diverse expertise. Further stud-
ies could link measure-level texture to higher-level orchestral effects and style, or focus
on other topics on melody, harmony, rhythm, and/or form, but also on organology and
acoustics.
The corpus may also enable or improve studies involving Machine Learning, both in
texture analysis from scores, in (semi-)automatic transcription from audio, or in mu-
sic generation tasks empowered with texture (used, for example, as a constraint or a
conditioning variable). Some of these ideas are examined in this thesis. In Chapter 8,
we delve into several generative orchestration tasks with texture, layer scores, and
orchestration plans, using this corpus as training data.
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6. Detection of Orchestral Blends from
Scores using Machine Learning

As we saw in Section 3.1.5, orchestral blends are related to orchestral layers. They both
concern grouping instruments in orchestral music and they can be formalized using the
same mathematical objects. In this chapter we investigate the detection of orchestral
blends in music scores (Task A1b) using supervised machine learning techniques along
with features motivated by perceptive studies. Instrumental blends happen when the
simultaneous sounds produced by different instruments are perceived as one entity
by a human listener, and they contribute to orchestral layering and the formation of
textures. In the Taxonomy of Orchestral Grouping Effects (TOGE), the model of music
perception developed by McAdams and collaborators, blends occupy the lowest level
of the hierarchical structure, and are the first phenomena to be perceived and processed
by the human listener (see Section 2.1.2 and [178]).
For this project we train a Machine Learning classifier on a subset of the OrchARD
database (see Section 2.5) to distinguish between blend and non-blend for couples of
instruments at a given measure of a piece.
In a previous study, Antoine et al. [11] were able to successfully identify in music
scores an average of 81.60% of the instruments participating into blends in a subset
of the OrchARD database (using a blend as a unit evaluation). They proposed a sys-
tem that includes three successive filters, based on onset synchrony, harmonicity, and
parallelism in pitch and dynamics, linked to three scoring algorithms. In this project,
instead, we adopt a data driven approach, and learn the rules from the corpus using
supervised Machine Learning.
The study presented in this chapter is the result of my collaboration with Prof. Stephen
McAdams at McGill University, my visit to his Music Perception and Cognition Lab-
oratory (MPCL), and the research project of Olivier Anoufa, student of the Master in
Data Science at Centrale Lille that I supervised. A submission is being prepared.
The visit to the MPCL deeply influenced my way of thinking about orchestration: in-
deed, in this chapter we adopt the timbre and perception approach (see Section 3.1.5)
to group instruments and we adopt the term “blend” from the TOGE.

This chapter is organized as follows. We start by introducing the problem in Sec-
tion 6.1, and we then present the state of the art in orchestral blends detection in
Section 6.2. We discuss data in Section 6.3 and we detail our modeling approach as a
binary classification problem in Section 6.4. Finally, we conclude by discussing results
and perspectives in Section 6.5.
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6.1. Introduction and Goals

Orchestral Blends In the context of music orchestration, an orchestral blend refers to
the process where multiple instruments are playing at the same time, and their in-
dividual sounds fuse together to generate a new distinct combined timbre [178, 21].
More precisely, this happens when the listener cannot identify or distinguish the dif-
ferent sources, that is to say, the different instruments that are playing at the same
time loose their individuality. A blend can be intentional or not. For a composer or
an orchestrator, achieving a good blend involves arranging the instruments in a way
that their individual timbres complement each other, creating a unified and cohesive
sound that often gives the impression to originate from a single source. Comparable to
the blending of colors in the visual arts, where mixing different pigments creates new
shades, orchestral blending is employed by composers and orchestrators to generate
new timbres, expanding the expressive possibilities of music ensembles.
In their Taxonomy of Orchestral Grouping Effects (TOGE), McAdams et al. [178] place
the blending process at the lowest level of a hierarchical organization of auditory
phenomena stimulated by orchestral music. As detailed in Section 2.1.2, blends and
non-blends are phenomena related to concurrent grouping, which concerns the human
auditory processes grouping together simultaneous sounds. Blends are of two types:
timbral augmentation, when the characteristic timbre of one instrument is enriched and
amplified by the other blending instruments, and timbral emergence, when a completely
new timbre is perceived. Finally, this phenomenon can be sustained or punctuated, de-
pending on its duration, and if it is sustained, it can be stable or transforming. A stable
blend is a blend with a specific group of instruments that does not change during time,
whereas in a transforming blend, there is an evolution in time and some instruments
can join or leave the blend.
In Section 3.1.5 we have shown that orchestral blends can be interpreted as orchestral
layers, where a timbre and perception criterion has been adopted to group the instru-
ments. The entire modeling process adopted in this chapter can therefore be adapted
to detect texture-based orchestral layers using the annotated corpus of classical sym-
phonies presented in Chapter 5.

Musical Cues that Affect Instrumental Blending Researchers have shown that several
cues can have an effect on the perception of simultaneous musical elements, result-
ing in the formation of blends and streams. Those include onset synchrony, meaning
that simultaneously starting sounds fuse better; harmonicity (or principle of tonal fu-
sion), which means that sounds separated by unisons, octaves, and, to a lesser degree,
other consonant intervals blend better; and parallel changes in dynamics and pitch
(co-modulation) [11, 234, 31]. The spectral overlap between different sound sources
has been identified as a contributing factor [234, 152]. The spatial disposition of the
instruments, the characteristics of the performance room, and other factors associated
with the musicians’ performance can influence the degree of blending [57, 151]. These
last three factors are dependent on a specific execution and are, therefore, typically be-
yond the control of the composer. Conversely, the initial four factors are compositional

94



6.2. Related Work

choices that can be planned by the composer or orchestrator in the score1.
These principles are of great importance. However, each of them alone can explain
very little. As will be discussed subsequently, not all couplings of synchronous parts
result in the component instruments blending together.
Additionnally, Cambouropoulos [31] considers two other principles that pertain to the
arrangement of sounds in time: temporal continuity, which refers to the use of contin-
uous or recurring sounds rather than brief or intermittent ones, and pitch proximity,
which indicates that successive tones with close pitches better maintain the coherence
of the stream.
In the TOGE [178], the concept of blend is distinct from that of stream. Indeed, the
formation of blends (concurrent grouping) is at the origin of the second class of auditory
grouping processes (sequential grouping) which determine the formation of streams and
textures.

Objectives In this study, we hypothesize that the musical features that give rise to
perceptual phenomena are already present and discernible in the score, regardless
of whether they were intentionally planned by the composer. Our objective is to
examine to which extent this assertion holds true for orchestral blends, to identify the
insights that can be extracted about the characteristic attributes of blends, to improve
the accuracy of previous investigations, and to focus on the peculiarities of misclassified
cases.

6.2. Related Work
A computational model of orchestral blends was proposed by Antoine et al. [11]. In
their paper, the authors describe an algorithm that exploits onset synchrony, harmonic-
ity, and parallelism in pitch and dynamics to identify orchestral blends from scores
(Figure 6.1). It selects the blending parts with a system that includes three successive
filters linked to three scoring algorithms, applied to every measure of the score (see
Figure 6.1).
First, parts are filtered by onset synchrony: the onset values for each active instrument
in the measure are listed, and the instruments sharing the most onset values (up to a 30
ms window) are grouped together. A synchrony score is calculated with the cardinality
of the intersection of the different sets of onset values. The synchronous groups are
passed to the harmonicity filter. This second filter checks at every onset if the syn-
chronous notes are in harmonic series, using the lowest pitch as root. If the instruments
are not in harmonic series, the algorithm checks if they are part of a tonal chord from
a set of templates. If there is no tonal chord including all pitches, the algorithm retains
the largest group of notes belonging to a tonal chord. Then an harmonicity score is
computed for all instruments that are either playing in harmonic series or forming a

1For the sake of completeness, we must report that some composers have tried to have some control
also on the disposition of the instruments. For example, Charles Ives divides the orchestra into three
instrumental groups that are placed in different spaces for his piece The Unanswered Question.

95



6. Detection of Orchestral Blends from Scores using Machine Learning

Figure 6.1.: The algorithm proposed by Antoine et al. [11] to retrieve orchestral blends
from scores is based on three successive steps that filter groups based on
onset synchrony, harmonicity, and parallelism in pitch and dynamics.
Figure reproduced from the original paper.

tonal chord. Finally, the parallelism filter checks if the parts in the groups are parallel in
pitch and if they follow the same dynamics curves. The algorithm generates a sequence
for each instrument by comparing the pitch of each note to the first note of the measure.
It assigns a value of +1, −1, or 0 to each note based on whether the pitch is higher,
lower, or the same of the first note of the measure. It then compares sequences across
instruments, adding 1 for matching values and 0 for differences. The parallelism score
is calculated as the proportion of matching elements to the total number of notes. A
similar procedure is followed for dynamics.
The final score is computed as the average of the three scores of the three steps, and a
group is retained as a potential blend if the score is higher than a given threshold.
The algorithm is evaluated by comparing its output with the ground truth (human
expert annotations from the OrchARD database). The evaluation is done in two ways,
one regarding every blend as a unit, and the second one measure by measure. The
output score corresponds to the number of instruments that are correctly retrieved
for each target blend in the ground truth. The best results are obtained by fixing the
threshold for the final average score to 60%. By considering a blend as one event, the
model successfully retrieved 81.60% of the instruments involved in the effect. Consid-
ering each measure as one blend, the model successfully retrieved on average 80.80%
of the instruments. This matching score corresponds to a sort of blend-level recall, as
it corresponds to the ratio between the number of correctly identified instruments of
the blend, true positives (tp), over the number of instrument in the target blend, true
positives and false negatives (tp + fn). Remember that

recall =
tp

tp + fn .
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As a complementary measure, they report the average percentage of extra instruments,
which is 13.8% when using the optimal output threshold value of 60%. The way this
value is computed is not completely clear.

6.3. Data
The data comes from three sources that we have had the possibility to access thanks
to Stephen McAdams. We have access to raw data from the OrchARD database, to the
repository containing data, code and results from Antoine et al. [11], and to a database
of spectral descriptors.

Expert Annotations from the orchARD Database The OrchARD database1 contains
expert annotations of orchestral effects, linked to scans of printed scores and recordings.
The information is stored in a SQL database and the access to the online querying
interface can be requested by interested researchers. We have been provided with a
copy of the raw tables from the database that we have stored in csv format. The database
contains many orchestral effects, including segregation, stratification, contrasts, and
gestures. In our project we only focus on detecting blends and we use this dataset as
ground truth to train and evaluate our model. Blends of different kinds are represented
differently in the OrchARD database. Timbral emergence blends are represented as a
set of instruments at a given location, where the location consists in the beginning and
end measure numbers. Those can coincide if the blend happens in one measure only.
Timbral augmentation blends are represented in a similar way, but with two sets of
instruments, one containing the dominating instruments and the second one containing
the embellishing instruments. The two groups share the same effect id. In this project,
we choose to only focus on detecting whole blends, avoiding the distinction between
timbral augmentation and timbral emergence, and avoiding treating as separate the
dominating component and the embellishing component, that we merge in one single
group. Except for the evolution type field, there is no difference in case of stable
and transforming blend, the annotations list all of the instruments that join the blend
between the first and last measure, and do not describe their evolution. In the study
by Antoine et al. [11], a handmade post-processing has been done to know the exact
components of transforming blends at every measure of a piece. We use this information
as target blend.

MusicXML Scores from OrchPlayMusic We worked with a subset of the OrchARD
database consisting of 27 extracts of scores, totaling to 1255 measures of music from
a diverse range of composers and periods in music history, including Mozart, Berlioz,
Debussy, and Vaughan Williams. Antoine et al. [11] used extracts of high quality
MusicXML scores from OrchPlayMusic matched to OrchARD annotations to test their
algorithm. We have access to the same collection of scores and to their code for the
algorithm, allowing us to make precise comparisons with their result. We used a

1https://orchard.actor-project.org/about/
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subset of the scores used by Antoine et al., from which we excluded 5 extracts because
of processing issues.

Spectral Descriptors In this project we want to include as features some spectral
descriptors that are connected to instrumental timbre. Those have been shown to affect
blend perception [152]. For this aim, we use a dataset of spectral descriptors of different
instruments that were computed on samples from the Vienna Symphonic Library2 by
Kazasis [138] using the Timbre Toolbox [210].

6.4. Modeling Approach
We frame our problem as a binary classification task, that consists in distinguishing
between blend and non-blend for every pair of instruments at every measure of a
piece. The choice of the measure as the time window for the analysis is coherent
with what decided for this thesis (see Section 3.1). Moreover, it is further motivated
by its successful use in the algorithm by Antoine et al. [11], and by the fact that
blends are annotated with measure granularity in OrchARD. Reducing the frame of
the calculations would result in a significant increase of the amount of data to process,
while a longer analysis frame seems inadequate for fast evolving blends. The choice of
the binary classification framework seems ideal to treat the problem with supervised
Machine Learning.
Our pipeline consists of four phases: encoding the ground truth for binary classification,
crafting features, training, and evaluating machine learning models. First we encode
with a binary variable the pairs of instruments that are part of the same blend on
every measure (Section 6.4.1); then we compute features that can be used as covariates
in the classification model, starting from musicXML scores (Section 6.4.2); and finally
we train and validate several variants of Machine Learning models for classification
(Section 6.4.3) using a leave-one-piece out approach and several evaluation metrics,
while holding a part of the dataset completely unseen for testing (Section 6.4.4).

6.4.1. Ground Truth Encoding
We build a ground truth table where each row corresponds to a pair of instruments at
a given measure, and which contains the target value for the binary classification tasks
(blend vs non-blend).
In order to encode the information from OrchARD in this format we proceed in the
following way. We start by considering an orchestral blend β defined as a subset of
the cartesian product between measures and ensemble, β ⊂ ℳ × ℰ (a blend has the
same formal description of a layer, Definition 3.5). At every measure m each blend is
characterized by a set of instruments, which is them-section of the setβ (Definition 3.6).
Each measure can contain zero, one, or more blends. Detecting the blends in a given
measure then consists in identifying a collection of disjoint sets of instruments. Our

2https://www.vsl.co.at/
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modeling approach is based on a pairwise analysis. For every measure, we consider
all possible pairs of instruments in the ensemble ℰ and we assign to each of them a
binary variable that takes value 1 if the two instruments belong to the same blend and
0 otherwise.
Consider for example

β45 = {m11,m12,m13,m14,m15} × {Vln1, Vln2, Cb} ⊂ ℳ × ℰ.

The couples that belong to blend β45 at any measure between 11 and 15 are

{Vln1, Vln2} , {Vln1, Cb} , and {Vln2, Cb} .

Then, assuming that no other blend is present on those measures, we would assign 1
to ({Vln1, Vln2} ,m11), and 0 to ({Vla, Vc} ,m11). In this way the problem is framed as
a binary classification task between blend and non-blend for instrument pairs at every
measure of the piece.

6.4.2. Feature Engineering
We compute several features that describe the content of the music score at the given
measure and for the two given instruments. Those features are extracted from the
musicXML scores using the python library music21 [54].
The first three features are computed on a single measure for each instrument indepen-
dently, and describe the distribution of the notes. They are

• note distribution statistics:
– the number of notes in a measure,
– the median pitch in the measure, and
– the pitch range in a measure, which consist in the interval between the lowest

and the highest pitch expressed in semitones.

Then we compute features that compare an instrument pair in a given measure. Those
are

• note distribution statistics: the absolute difference between the values the first
three features take for a considered pair of instruments at every measure,

• the onset synchrony score,

• the harmonicity score,

• the pitch parallelism score,

• the absolute difference between the first and second components of the cosine
contours (comparing two parts on a larger time window, between measure m and
measure m + 1), and
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• spectral descriptors (centroid, spread, skewness, kurtosis, and flatness).

As discussed in Section 3.1.5, this model of blends does not have exactly the same focus
as the rest of the thesis and as the analysis we did in Chapter 5. Somehow, many of
the features that we encode here correspond to our criterion for analyzing layers, in
particular onset synchrony and parallelism. However all features related to spectral
descriptors are unique for this chapter, as they pertain to the study of timbre perception.
The rest of this section presents further explanations on the computation of some of the
features.

Note Distribution Statistics They are the first three features listed above and their
absolute differences. No further explanation is required. The idea is that similar parts
should have similar note distribution statistics.

Onset Synchrony Two parts are said to display onset synchrony if their notes start
simultaneously. A stronger version of the synchrony property requires notes to also
share the same duration. We implement the feature as the ratio between the number of
synchronous notes between the two instruments (#synch) and the maximum number
of note between the two instruments in the measure (#notes1 and #notes2):

onset synchrony =
#synch

max(#notes1, #notes2)

We implement both a strict version of the feature that requires same note durations and
a loose version of the feature without this request. We used the strict version in the final
model. Figure 6.2 shows an example with perfect synchrony (score of 1). Figure 6.3
shows another example of a transforming blend with non perfect synchrony between
the different parts.

Figure 6.2.: Fourth movement from Symphonie Fantastique by Berlioz, measures 95-96.
Perfect onset synchrony between Clarinet 1 and Bassoon 1.

Harmonicity Two instrumental parts are said to be in harmony if they play notes that
are in a consonant interval. There is no scientific consensus on what are the consonant
intervals and on why they are consonant [183]. We adopt what is commonly accepted
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Figure 6.3.: Third movement from Five Pieces for Orchestra by Schoenberg, op. 16, mea-
sures 1-11. A sustained and transforming timbral emergence blend. The
different parts are not all in perfect synchrony.
Figure and audio reproduced from [178].
 http://algomus.fr/fm/schoenberg-five-pieces-iii-1.mp3

and thought in music theory classes. We separate perfect consonances (unison, octave,
fifth and fourth), imperfect consonances (third and sixth) and dissonances (second,
seventh and tritone) [18, 35]. We build the harmonicity score by assigning to every
concurrent couple of notes i a score hi of 1 for perfect consonance, 0.5 for imperfect
consonance, and 0 for dissonance. We then average the consonance scores on the
number of notes in the studied measure, considering the maximum number of notes
between the two instruments in the measure (#notes1 and #notes2):

harmonicity =

∑
i hi

max(#notes1, #notes2)
In the example displayed in Figure 6.4, the two parts maintain hamonicity during the
three measures, alternating between imperfect and perfect consonance.

Pitch Parallelism Two parts are said to be parallel in pitch if the intervals between
successive notes are going in the same direction. We implemented the feature that
assesses the parallelism between two instruments in the following way. A function
examines the note sequences of each part at the same time, comparing successive notes
to determine if they are higher, lower, or equal in pitch relative to the previous note.
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Figure 6.4.: Fourth movement from Symphonie Fantastique by Berlioz, measures 70-72.
Flute 1 and Oboe 1 maintain hamonicity during the three measures. They
start with a D and B♭ which form a minor sixth interval, an imperfect
consonance. Then, during the rest of the excerpt, the two parts play the
same notes, forming a perfect octave, a perfect consonance. Again they
depart from the perfect octave on the second quarter of measure 72 (major
and minor sixth), to conclude in perfect octave on the second half of the
measure. This produces harmonicity scores of 0.67, 1.00, and 0.83 for the
three measures.

Each time the two parts have the same movement, the function increments a counter.
The resulting parallelism score is the ratio between this “same movement” counter
c and the maximum number of notes between the two instruments in the measure
(#notes1 and #notes2).

pitch parallelism =
c

max(#notes1, #notes2)
.

Figure 6.5 displays an example of two parallel parts moving down in octave doubling.

Figure 6.5.: Fourth movement from Symphonie Fantastique by Berlioz, measures 124-125.
Parallelism in pitch between Flute 1 and Oboe 1. The two parts play a
descending scale in octave doubling.

This feature, like synchrony and harmonicity, is a score in the interval [0, 1], corre-
sponding to a proportion of notes that have a parallel motion in pitch.

Cosine Contour Difference We consider an alternative method to evaluate pitch par-
allelism, or the similarity between the shapes of two instrumental parts. The cosine
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contour is a compressed representation of melodic contours proposed by Cornelissen
et al. [46]. A melodic contour can be thought of as a step function that describes the
height in pitch of the notes during time. The cosine contour is computed by taking the
discrete cosine transform (dct) of the melodic contour function. The basis functions
for the dct are given by vk(n) = αk cos

(
π(2n+1)k

2N

)
, where α0 = 1√

N
and αk =

√
2
N are

normalizing constants. The coefficients ck of the discrete cosine transform are obtained
by projecting the contour on the basis functions. They provide a condensed abstract
description of the shape of an instrumental part without precise information on pitches
and rhythm. Figure 6.6 shows how a cosine contour is computed starting from a step
function representing the piano roll. The coefficient c0 describes the average pitch of
the part, then low order coefficients describe the general shape of the contour while
higher order coefficients describe high frequency variations of the contour.

Figure 6.6.: The cosine contour is the cosine transform of the step function representing
the melodic contour of a part. Illustration reproduced from [46].

To compute the cosine contour difference between two instruments at measure m, we
compute the cosine contour of their two parts considering the notes in measure m and
m+1. We use more than one measure to give a better overview of the overall movement
of the part and for the transform to be less sensitive to local “noisy” movements. We
only consider the coefficients c1 and c2 of the transform which are called respectively
“descendingness” and “archedness” by Cornelissen et al. [46]. In this way every part is
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placed in a two-dimensional cosine contour space. We exclude c0, which corresponds
to the average pitch, since we already included the median pitch in our features, and
we discard also all coefficients ck with k > 2. Two examples of comparison of the cosine
contours are displayed in Figure 6.7 (similar shapes) and Figure 6.8 (different shapes).

(a) Score

(b) Cosine contour of Flute 1 (c) Cosine contour of Flute 2

Figure 6.7.: Overture from Don Giovanni by Mozart, measures 247-252. Comparison of
the cosine contours of Flute 1 and Flute 2. Although not being exactly the
same, the two parts have a similar shape, resulting in two close points in
the cosine contour space.

We consider the difference between two parts component by component. If cj
k

is the
kth component of the cosine contour for instrument j, then

cosine contour difference1 =
��cins1

1 − cins2
1

�� ,
cosine contour difference2 =

��cins1
2 − cins1

2
�� .
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(a) Score

(b) Cosine contour of Oboe 1 (c) Cosine contour of Clarinet 1

Figure 6.8.: Overture from Don Giovanni by Mozart, measures 209-217. Comparison of
the cosine contours of Oboe 1 and Clarinet 1. The two parts are perfectly
homorhythmic, but they have a different contour shape. The position in
the cosine contour space captures the differences in shape between the two
parts, more pronounced in the second coordinate “archedness”.

These two features can take values in the interval [0,+∞]. We expect that the more two
parts are different in shape, the larger the differences in cosine contour coordinates, the
less they are likely to blend.

Spectral Descriptors Different timbre characteristics of the instruments can have an
effect on their blending qualities. It has been shown that instruments with similar
spectral characteristics tend to blend better [234, 152]. We investigate these aspects
that have not been much explored in existing computer science models of blends by
incorporating a few spectral descriptor features.
The simplest way to take instrumental timbres into account is to feed to the model two
categorical variables that simply encode (with a one-hot encoding) the names of the
instruments. Through this simple information, a model can learn from data which
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instruments tend to blend better together.
We also decided to include the values of some spectral descriptors, that are known for
having an effect on instrumental blending. We consider (see Figure 6.9 for a simplified
graphical representation)

• the spectral centroid, which is the spectral center of gravity of a sound,

• the spectral spread, which is the standard deviation of the spectrum around its
mean value,

• the spectral skewness, which measures the balance and the asymmetry of the
spectrum around its mean value with a positive (respectively negative) value
indicating more energy in the frequencies below (respectively above) the spectral
centroid,

• the spectral kurtosis, which gives a measure of the peakedness or tailedness of
the spectrum, this value can change independently from the spectral spread, and

• the spectral flatness, which is a measure of the tonal quality of the sound, obtained
by dividing the geometric mean of the spectrum by its arithmetic mean. Maximal
spectral flatness (approaching 1) is obtained by white noise, minimal spectral
flatness is obtained by pure tones.

The first four descriptors loosely represent the moments of the spectrum. For a precise
mathematical formulation of those indicators we refer the reader to the Timbre Tool-
box paper [210]. In this work, we want to give a score-based analysis and detection
algorithm, so we do not compute these features on recordings of the pieces. Instead,
we start from a dataset containing the descriptors presented above for different instru-
ments. This dataset was constructed by Kazasis [138] using the Timbre Toolbox [210]
and samples from the Vienna Symphonic Library (VSL)3. Each timbre descriptor is
characterized by its median value and inter-quartile range throughout the time evolu-
tion of the sound. The dataset contains all those descriptors computed on the whole
playing range of every instrument, which means that each descriptor has a value for
each note pitch and each dynamic level. Figure 6.10 is a plot of the spectral centroid
median for the violin which contains the measure computed on all violin samples in
the VSL. We disregard the dynamic level and only keep an average of the descriptors
per pitch to simplify the computation.
For each measure and each instrument in a piece we compute the median pitch and
we retrieve the spectral descriptors for the given instrument at the computed median
pitch. We then compute the absolute difference between each spectral descriptor for
all the couples of instruments, which leaves us with the absolute differences between
the two instruments’ spectral centroid median and inter-quartile range (iqr), spectral
spread median and iqr, spectral skewness median and iqr, spectral kurtosis median
and iqr, spectral flatness median and iqr. The obtained features represent some sort of
timbre distances between the two parts on the studied measure.

3https://www.vsl.co.at/
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Figure 6.9.: Graphical representation of the spectral timbre descriptors used for this
project. See [20] for more practical examples.
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Figure 6.10.: Samples for the spectral centroid median of the violin in the dataset con-
structed by Kazasis [138]. Every blue point corresponds to a violin sample
from the Vienna Symphonic Library. Multiple points correspond to the
same pitch, as the different dynamics and playing techniques are collected
in this huge library. We highlight the median value per pitch with larger
red dots, and we represent the overall median value with an horizontal
dotted red line. As expected, the spectral centroid depends on the pitch.
We use the median value per pitch (large red dots) in our models.

6.4.3. Training Machine Learning Models

We train and compare several machine learning models on the classification task blend
vs non-blend for instrument pairs at a given measure of a piece, using as input the
features described in Section 6.4.2, or their manipulations. In our experiments we
compare between different models and different combinations of the features. When
training the models, we do not consider the rows that correspond to instruments that
are silent in the given measure. This obtains the effect of rebalancing the proportion of
the target variable. In the inference phase, we always give the prediction of 0 in the case
that at least one of the instruments is silent, bypassing the use of the machine learning
models. Table 6.1 summarizes all the models that we have trained, indicating their type,
the features used, whether standardization of the features to uniform their mean and
standard deviation to 0 and 1 has been applied, and types of data augmentation. We
used simple statistical models for the classification task: regularized logistic regression,
k-nearest neighbor, and decision tree. Those models are lightweight and can be quickly
trained and validated on any laptop cpu, allowing to put a cross-validation scheme in
place. Three dummy models have been added for comparison: their outputs are always
0, always 1, or a random prediction. All calculation have been performed in python
using the scikit-learn library. The entire cross-validation scheme for all listed models
took about half an hour on a laptop equipped with an Intel Core i7-9750H cpu.
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Name Description Features used Scaling
dummy0 Always output 0 - -
dummy1 Always output 1 - -

dummy_unif Output 1 or 0 from uniform distribution - -
log_regr_base Logistic Regression (Regularized) cont. w/o spectral ○
log_regr_names Logistic Regression (Regularized) cont. w/o spectral + ins. names ○

log_regr_spectral Logistic Regression (Regularized) cont. + spectral ○
log_regr_names+spectral Logistic Regression (Regularized) cont. + spectral + ins. names ○

knn1 K Nearest Neighbor (k = 1) cont. w/o spectral + ins. names ○
knn5 K Nearest Neighbor (k = 5) cont. w/o spectral + ins. names ○

decision_tree Decision Tree cont. w/o spectral + ins. names X

Table 6.1.: Table of the models trained for the classification of couples of instruments
at a given measure into blend vs non-blend. The first three dummy models
are used as baseline. Every model uses all of the continuous features (cont.),
including or not the spectral features. Some models have been trained also
with a one hot encoding of the instrument names (ins. names). All models
used come from the python library scikit-learn.

6.4.4. Model Evaluation
In order to evaluate the model we select a subset of the pieces as test set and use the
remaining pieces as training-and-validation set. The extracts of pieces included in the
test set are not casual, but are selected among the ones for which Antoine et al.’s model
performed best and worst. They are Borodine’s In the Steppes of Central Asia (measures
40-71), the fourth movement of Schubert’s Symphony 9 (meas. 543-564), and the second
movement of Vaughan Williams’s Symphony 8 (meas. 71-107). We train and validate the
models on the training-and-validation dataset using a leave-one-piece out approach,
i.e. we set aside one piece for validation while training on all remaining pieces, we
iterate this process for every piece in the train-and-validation set, and we average the
results obtained in each iteration.
When evaluating the results, we adopt a measure-as-a-unit approximation, which con-
siders every measure of a given blend as an independent entity, as opposed to the
blend-as-a-unit approach, which considers the entire blend as one entity. We are well
aware that a blend is a phenomenon that can span several measures, but we simplify
the problem by evaluating every measure independently from the others.
The choice of good evaluation metrics for the detection of blends is not trivial, with
different points of view that can be taken. We present here three methods: pairwise
evaluation, through which we evaluate directly the results of the binary classifica-
tion, groupwise evaluation, through which we evaluate the capability of the model
in correctly retrieving the groups of instruments marked as blends in OrchARD, and
partition evaluation, through which we evaluate the capability of the model in correctly
partitioning the ensemble into blending groups. Here is a list of all the used evaluation
metrics:

• accuracy (pairwise),

• precision (pairwise),

• recall (pairwise),

• f1 score (pairwise),
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• precision (groupwise),

• recall (groupwise),

• f1 score (groupwise),

• extra instrument score (groupwise),

• extra instrument number (group-
wise),

• extra blends number (groupwise),

• purity (partition).

6.4.4.1. Pairwise Evaluation

The evaluation strategy that is most aligned with our modeling approach consists in
computing standard classification metrics (accuracy, precision, recall, and f1 score) for
the classification problem. We call these pairwise metrics, because they are computed
considering the classification problem of pairs of instruments in each measure. This is
opposed to the metrics that will be discussed later, in which we use the classification
results to construct groups of blending instruments to compare with the target groups
in OrchARD. We briefly remind here the definitions of these metrics.

acc =
tp + tn

N
, prec =

tp

tp + fp , rec =
tp

tp + fn , f1 = 2 prec · rec
prec + rec ,

where tp is the number of true positive samples, fp of false positive, fn of false negative,
tn of true negative, and N = tp + fp + fn + tn is the overall number of samples.

6.4.4.2. Groupwise Evaluation

A different point of view is the one utilized by Antoine et al. [11], which evaluates the
resulting blends as groups of instruments. For every blend in the target annotations
and for every measure of its temporal extension, they evaluate the performance of the
retrieval by computing the ratio between the number of correctly identified instruments
and the number of instruments in the target blend. They then average for all consid-
ered blends. We call this measure groupwise recall, and we extend the procedure by
computing also the groupwise precision, and f1 score. There are two critical steps that
are required in order to perform groupwise evaluation: the first one is to construct
groups of instruments starting from the pairwise classification, and the second one is
to match the constructed groups to the target blends.

Grouping Instruments with Depth-First Search In order to construct groups of in-
struments we consider a graph for every measure of a piece, where the nodes are the
instruments, and two nodes are connected by an edge if the couple is predicted to be
blending on the given measure. Then we identify the blends with the maximal com-
ponents of a graph, i.e. the maximal connected subgraphs. An example is shown in
Figure 6.11. We use a depth-first search algorithm to retrieve the sets of instruments
that constitute maximal components [78]. This algorithm uses backtracking to visit
every node, and keeps in memory a list of the visited nodes. It starts at any unvisited
node and it searches its neighbor nodes to form a group, adding them to the visited
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nodes. Once a complete subgraph is found, the process repeats with another unvisited
node until all nodes in the graph are marked as visited. With this procedure, some
instruments that were not predicted as blending might end up in the same blend group,
if there exists a path passing through other instruments between them.

Figure 6.11.: Consider the first measure of Schoenberg’s score from the example in Fig-
ure 6.3. The depth-first search algorithm retrieves one group in this case,
highlighted in red. Not all nodes in the group are mutually connected, but
there exist a path between any pair of them. Two instruments are playing
but are not blending, and four are silent.

Matching Predicted and Target Groups Once we have constructed our predicted in-
strument groups, we need to match them to the target blends. This can be framed as a
combinatorial optimization problem, more precisely as an assignment problem [146].
For every measure, we consider a list of target blends T1, . . . , Tn, and a list of predicted
blends P1, . . . ,Pν, where Ti ⊂ ℰ,∀i ∈ 1, . . . ,n and Pj ⊂ ℰ,∀j ∈ 1, . . . ,ν. The objective is
to find the optimal matching between sets of target blends and sets of predicted blends
such that the sum of the number of common elements in each pair is maximized (see
Figure 6.12). We can therefore define a cost matrixC for the assignment problem, where
the element cij, with i ∈ 1, . . . ,n, and j ∈ 1, . . . ,ν is given by

cij = −|Ti ∩ Pj|.

We solve the optimization problem with the python function linear_sum_assignement
from scipy.optimization, which implements a modified Jonker-Volgenant algorithm
with no initialization [53].
In the evaluation of their algorithm, Antoine et al. [11] match the predicted groups to
the target blends by hand. Whenever their algorithm predicts two separate groups in
correspondence of one big target group, they choose to match both predicted groups to
the same target group and merge them for the evaluation. One may indeed argue that
such a result is close to the target, as the only difference is that the target group has been
split in two by the retrieval algorithm. We decide not to merge the groups that have
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Figure 6.12.: Matching algorithm representation. On the left are target blends, on the
the right predicted blends, in the middle the cost matrix for every possible
match. The optimal solution is chosen by minimizing the total cost.

been output as separate, and to evaluate the algorithm on its capability to partition
instruments into the same blending groups as in the ground truth. If we have the
same amount of target and predicted groups, the optimization problem solver gives a
one-to-one matching, otherwise there can be an excess of predicted groups or an excess
of target groups. We count the number of extra predicted blends and report it with
the other groupwise metrics, and we consider excess target groups as not retrieved,
contributing to the group precision and recall averages with a value of 0.

Extra Instruments Antoine et al. [11] report a percentage of extra instruments that are
added to the blends by their model, but the way it has been computed remains unclear.
We report an extra instrument score, which is the proportion of blends (with measure
as unit) for which extra instruments are retrieved, and the extra instrument number,
which is the average number of extra instruments retrieved on all the blends.

6.4.4.3. Partition Evaluation

A third point of view is to completely avoid the problem of matching predicted groups
to target groups, and to look at the results for each measure as a partition of the
instruments in the given measure. Metrics for the supervised evaluation of clustering
algorithms can be used in this approach. These metrics compare two partitions of the
same set of elements, here ℰ, and evaluate the similarity between the two partitions.
There exists many different metrics that can be used, but we report here only the purity
between the target and predicted partition.
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Purity (pur) is a measure of the extent to which predicted clusters contain elements
from a single target class. It is defined as

pur =
1
N

∑
j∈{1,...,ν}

max
i∈{1,...,n}

|Pj ∩ Ti|,

where {T1, . . . , Tn} is the target partition, {P1, . . . ,Pν} the partition predicted by the
model, and N the number of instruments in ℰ. The purity will tend to be higher if
each predicted cluster contain mostly points belonging to the same target subset [168].
Some known problems of this index are its sensitivity to imbalanced data, and to a high
number of clusters. Therefore we compare the partitions obtained by considering all
blends as distinct clusters and by treating all the remaining out-of-blend instruments as
one additional cluster. This means that we would have only one cluster in case there is
no blend in a measure, and two clusters in case there is one blend that does not include
all of the instruments. We apply the same procedure to the target and to the predicted
blends.

6.5. Results and Discussion
We report the preliminary results obtained with pairwise, groupwise, and partition
evaluation metrics, using simple statistical models in Tables 6.2, 6.3, and 6.4. The same
results are shown through bar plots, for easier readability. Our best performing model
is log_regr_names, which is a logistic regression classifier, trained on all features except
the spectral descriptors, and including the instrument names. It achieves a performance
that is comparable to the state of the art model antoine [11].
When considering the pairwise performance metrics (Figure 6.13), accuracy is very
high, also when considering the dummy models. This happens because the propor-
tion of blending and non-blending pairs of instruments at a given measure is very
unbalanced, with 94.0% of samples corresponding to non-blends in the training and
validation set. The dummy0 model that always outputs 0, is therefore correct for 94.0%
of the samples. Moreover 84.2% of the samples are excluded from training and au-
tomatically classified as non blending for all models, since they contain at least one
instrument that is silent on the measure. This fixes to 84.2% a lower bound for the
accuracy. A high precision here means that the model is good at keeping the number of
non-blending pairs misclassified as blending low; conversely, a high recall means that
most of the blending pairs are correctly classified. It is not surprising therefore that
dummy1 gives the highest recall. The f1 score is a balanced measure between the two,
and log_regr_names and antoine obtain similar performances, the first having higher
precision, and the second one higher recall. Notice that the log_regr_names+spectral
obtains the same results as log_regr_names, meaning that the inclusion of the spectral
features seems irrelevant when the timbre is already characterized by the instrument
names.
Our model and antoine achieve similar results in groupwise precision, recall and f1
score (Figure 6.14). A high groupwise precision means that the predicted blend contain
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Leave One Piece Out (Training and Validation Dataset)
model name accuracy f1 precision recall
dummy0 0.940 0.000 0.000 0.000
dummy1 0.876 0.429 0.296 0.778
dummy_unif 0.908 0.338 0.298 0.391
log_regr_base 0.939 0.315 0.482 0.233
log_regr_names 0.938 0.486 0.482 0.489
log_regr_spectral 0.940 0.329 0.496 0.246
log_regr_names+spectral 0.938 0.486 0.482 0.489
knn1 0.930 0.160 0.286 0.111
knn5 0.931 0.127 0.264 0.084
decision_tree 0.929 0.335 0.387 0.295
antoine 0.934 0.498 0.461 0.542

Test Dataset
model name accuracy f1 precision recall
log_regr_names 0.962 0.301 0.189 0.740
antoine 0.962 0.271 0.172 0.649

Table 6.2.: Comparison of the pairwise evaluation metrics. They are computed with
a leave-one-piece out strategy on the training and validation dataset (top).
Three dummy models, regularized logistic regression, knn, decision tree,
antoine. On the bottom the results on the test dataset for our best performing
model and antoine.

accuracy f1 precision recall
variable

0.0

0.2

0.4

0.6

0.8

va
lu

e

Pairwise Metrics (Leave One Piece Out Validation)
model_name

dummy0
dummy1
dummy_unif
log_regr_base
log_regr_names
log_regr_spectral
log_regr_names+spectral
antoine

Figure 6.13.: Pairwise evaluation metrics for the logistic regression models.
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mostly instruments from the target group; conversely a high groupwise recall means
that most of the instruments in the target blend are present in the predicted group,
the groupwise f1 score is a balanced measure between the two. The slightly lower
precision of log_regr_nameswith respect to antoine can be explained by the tendency
of the first model to build larger groups, with extra instruments. This also contribute
to having a higher recall than antoine. One should not be surprised by the fact that
the groupwise recall we report for antoinemodel is lower than the performance score
reported in the original model paper, as we have used a different approach to match
predicted groups to target groups. In our evaluation we do not allow a target group to
be associated to more than one retrieved group. It is also to be noticed that antoine is
the (non dummy) model that has the lowest number of extra retrieved blends.
The partition purity metric gives similar results. A high purity metric is to be inter-
preted as indicating that the target and predicted partitions resemble, and differ only
by a few elements. The results confirm that log_regr_names and antoine are the two
best performing algorithm, and give similar results (Figure 6.15).
We have observed that the use of spectral features does not seem to have an effect on the
model performance when added to the model with instrument names. Nevertheless
we observe a slightly better performance, on all the metrics, when they are added to
the base model (compare log_regr_spectralwith log_regr_base). We would expect
a similar improvement to that obtained by adding instrument names. We explain this
lower impact as due to the incompleteness of the timbre characteristics dataset. We
have access to a lot of detailed information for the analyzed instruments, but we do not
have the same analysis for all orchestral instruments appearing in the scores, some of
which are missing. Future studies should consider extending the dataset of spectral
features.
Table 6.5 compares piece by piece the groupwise recall obtained by our model with the
state of the art, both on validation and on test excerpt. The two models are comparable
in performance, but there seems to be two groups of pieces. In the first group antoine
performs significantly better than log_regr_names, and on the other one it is the op-
posite. A more thorough investigation on the characteristics of the pieces in these two
groups is required.
Finally, the tables report also the metrics obtained on the test dataset by our best
performing model log_regr_names and by antoine. They have been calculated by
retraining the model on the entire train and validation dataset, and by using that model
to do prediction on the test dataset. We can observe a similar drop between the two
models in all performance metrics with respect to validation. This suggests that the
lower performance might be due to the difficulty of these examples rather than to over-
fitting.
To summarize, we showed that a ML model with knowledge-driven features can match
the results of the dedicated algorithm that is state of the art for the problem of identi-
fication of orchestral blends. In a perspective study it would be interesting to analyze
the coefficients of the best performing statistical models and to look at the results of
the prediction on scores, in order to gain a better understanding of their function-
ing. The results could possibly be interesting for the music perception community, as
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Leave One Piece Out (Training and Validation Dataset)

model name precision recall f1 extra
instr.
score

extra
instr.

number

extra
blends
number

dummy0 0.000 0.000 0.000 0.000 0.000 0.000
dummy1 0.529 0.796 0.601 0.708 3.969 0.000
dummy_unif 0.516 0.774 0.584 0.706 3.945 0.007
log_regr_base 0.700 0.502 0.550 0.221 0.754 0.773
log_regr_names 0.760 0.733 0.709 0.364 1.452 0.816
log_regr_spectral 0.733 0.514 0.568 0.225 0.697 0.873
log_regr_names+spectral 0.760 0.733 0.709 0.364 1.452 0.816
knn1 0.542 0.470 0.460 0.594 2.379 0.428
knn5 0.574 0.415 0.436 0.532 1.807 0.534
decision_tree 0.576 0.686 0.580 0.616 2.995 0.186
antoine 0.770 0.682 0.691 0.332 1.039 0.718

Test Dataset

model name precision recall f1 extra
instr.
score

extra
instr.

number

extra
blends
number

log_regr_names 0.293 0.556 0.362 0.884 3.580 0.621
antoine 0.282 0.435 0.331 0.696 2.072 0.318

Table 6.3.: Comparison of the groupwise evaluation metrics. They are computed with
a leave-one-piece out strategy on the training and validation dataset (top).
Three dummy models, regularized logistic regression, knn, decision tree,
antoine. On the bottom the results on the test dataset for our best performing
model and antoine.

precision recall f1 extra
instruments

score

number of
extra

blends
variable

0.0

0.2

0.4

0.6

0.8

va
lu

e

Groupwise Metrics (Leave One Piece Out Validation)

extra
instruments

number
variable

0

1

2

3

4

va
lu

e

Group Metrics (Leave One Piece Out Validation) 
 Extra Instruments Number

model_name
dummy0
dummy1
dummy_unif
log_regr_base
log_regr_names
log_regr_spectral
log_regr_names+spectral
antoine

Figure 6.14.: Groupwise evaluation metrics for the logistic regression models. In the
graph on the left are groupwise precision, recall, f1 score, the extra in-
sturments score and the average number of extra blends detected. In the
graph on the right the average number of extra instruments.
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Leave One Piece Out (Training and Validation Dataset)

model name purity

dummy0 0.847
dummy1 0.911
dummy_unif 0.910
log_regr_base 0.927
log_regr_names 0.943
log_regr_spectral 0.930
log_regr_names+spectral 0.943
knn1 0.897
knn5 0.890
decision_tree 0.914
antoine 0.940

Test Dataset

model name purity

log_regr_names 0.925
antoine 0.931

Table 6.4.: Comparison of the partition evaluation metrics. They are computed with
a leave-one-piece out strategy on the training and validation dataset (top).
Three dummy models, regularized logistic regression, knn, decision tree,
antoine. On the bottom the results on the test dataset for our best performing
model and antoine.
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Figure 6.15.: Partition evaluation metrics for the logistic regression models. All logistic
regression models give similar purity values to antoine.

117



6. Detection of Orchestral Blends from Scores using Machine Learning

they would open new ways to investigate the relationship between orchestral scores
and blend perception. We would also like to explore more complex machine learning
models, to refine the computation of some of the features, and to explore some data
augmentation strategies based on the symmetry between instruments in instrument
pairs. A comparison with a deep learning model using features autoencoded starting
from the note sequence could also be of interest.
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6.5. Results and Discussion

Excerpt groupwise recall
antoine t = 60

groupwise recall
log_regr_names

Leave One Piece Out Validation Excerpts

Berlioz SymphFantastique iv (1-77) 0.795 0.747
Bizet Carmen Overture (121-147) 0.810 0.652
Brahms Symph4 i (1-57) 0.678 0.711
Debussy La Mer i (141 mes) 0.423 0.555
Debussy La Mer iii-DialogueDuVentEtDeLaMer (31-... 0.556 0.706
Haydn Symph100Military ii (1-70) 0.854 0.933
Haydn Symph100Military iii (50-65) 0.851 0.816
Mendelssohn Symph3-Scottish ii (1-40, 242-273) 0.572 0.599
MoussorgskyOrchRavel Tableaux BabaYaga (106-124) 0.869 0.869
MoussorgskyOrchRavel Tableaux Catacombae (1-22) 0.431 0.886
MoussorgskyOrchRavel Tableaux Gnome (57-109) 0.663 0.634
MoussorgskyOrchRavel Tableaux Prom-1 (24 mes) 0.883 0.906
MoussorgskyOrchRavel Tableaux Prom-2 (12 mes) 0.911 0.958
MoussorgskyOrchRavel Tableaux SamuelGoldenbergU... 0.889 1.000
MoussorgskyOrchRavel Tableaux VecchioCastello (... 0.706 0.529
Schubert Symph8 i (1-62) 0.877 0.908
Schubert Symph9 ii (300-310) 1.000 1.000
Schubert Symph9 iii (187-221, 336-359) 0.800 0.892
Sibelius Symph2 ii (150-203) 0.665 0.866
Smetana BarteredBride Overture (9-59) 0.896 0.928
Smetana Ma Vlast iiMoldau (185-228) 0.332 0.928
VaughanWilliams Symph8 iv (12-25, 54-96) 0.791 0.642
Verdi Aida ActII-DanzaDiPiccoliSchiaviMori (41-57) 0.880 0.800
Verdi Traviata Prelude (17-37) 0.790 0.592

Test Excerpts

Borodine StepsCentralAsia (40-71) 0.065 0.108
Schubert Symph9 iv (543-564) 0.500 1.000
VaughanWilliams Symph8 ii (71-107) 0.909 0.864

Table 6.5.: Excerpt by excerpt comparison of the groupwise recall measure between
Antoine et al. [11]’s model and our best performing model. This measure
describe the average proportion of instruments from the target blend that
are retrieved by the model. On the top are the results of cross validation,
and on the bottom the results on the test set.
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Part III.

Orchestration and Co-creativity





7. Co-creative orchestration of Angeles

This chapter presents a research/creation project for which we have created an AI-
human orchestration of two movements of Angeles, a piano composition by Gissel
Velarde. The origin of this project dates back to the 15th of March 2023, when Gissel
Velarde, Bolivian researcher and composer, published a public call on the ISMIR com-
munity mailing list seeking for AI orchestrations of some pieces from her composition
Angeles. Participants were expected to employ any kind of AI method combined with
human skills. Angeles is a a suite of six short piano solo pieces, recorded in 2011. The
first edition of the scores has been published by PRICA Verlag in 2022. We participated
by orchestrating the second movement Inexorable and the last movement El Jardin Etereo,
applying the same methodology to two pieces that differ in tempo and style. Our team
was composed of four people, including the author of this thesis, his two supervisors,
and Mael Oudin, a professional orchestrator and PhD student in music theory at McGill
University. The pieces were performed live during a concert by the Orquesta Kronos
conducted by Andrés Guzmán-Valdez on the 19th of July 2023 at Nuna Theatre in La
Paz, Bolivia. During the concert, the other four pieces, orchestrated by other people
with traditional methods, were also performed.

This chapter is partly based on the publication in the conference evoMUSART 2024 [165].
Together with Mael Oudin, we were nominated as Outstanding Students of Evo* 2024 for
this contribution.

7.1. Goal and Contents

We carried out this project to orchestrate two piano pieces by Gissel Velarde, focusing
on co-creativity, i.e. putting human beings and AI models in the same loop to make
music. We used this project as a case study for computational creativity in music and
orchestration, where the model has some characteristics of both the AI as a colleague and
the AI as a tool [163, 134]. We not only want the AI as a tool to perform certain tedious
tasks, but we want the AI to enhance the artists’ creativity by suggesting new ideas,
that would remain otherwise unexplored. To go towards an orchestration model that
can be a co-creative AI colleague, we need to depart from black box models that aim at
modeling one task in its entirety, and we must target a highly controllable generative
model. This project has been used as a practical playground for developing and
testing in practice our framework for computer assisted orchestration (Chapter 4). In
order to get an outcome of high quality scores, ready to be distributed to the orchestra,
in a limited time frame, we focused on the formalization of a possible orchestration
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7. Co-creative orchestration of Angeles

Figure 7.1.: The workflow for the co-creative orchestration of Angeles builds on the layer
score and on the orchestration plan.

process, allowing interactions between a human orchestrator and computational al-
gorithms, and on a simple implementation. We explicitly attempted to model simple
but high-level conceptual data in a way that it can be handled by AI but that it is also
human-understandable, so that the musician can interact with it.
Following Benward and Saker [18], we characterize orchestration in the western clas-
sical style as an overlay of different layers, which have the roles of melodies or (har-
monic/rhythmic) accompaniment, played by the different instruments of the orchestra
and their combinations (see Section 3.1). We then create the layer score and orchestration
plan described in Sections 3.2 and 3.3 of this thesis to realize the orchestration process,
implementing a simple Markov model to generate the latter. The AI is personalized for
the users through instrumentation presets that are constructed to mimic their orches-
tration style. AI-human interaction occurs through human segmentation of the score
at two stages of the process (layer score and orchestral segments with loudness profile),
through the human selection of the final orchestration plan, and through the human
writing of the actual orchestral score.
We detail the research aspects of this co-creative project and analyze the roles of the
actors involved in the creation of the final piece: the Music Information Retrieval (MIR)
researchers, the orchestrators, and the algorithms.

In the framework for co-creative interaction in orchestration presented in Chapter 4,
the workflow we adopted in this project is a practical implementation of the computer
assisted orchestration process (Task T1, Section 4.2). It is displayed in Figure 7.1:

• The first step is to extract the layer score from the piano score by analyzing
its musical texture (Tasks T3 and A2). For this step we proceeded manually
Section 7.2.

• The second step is to build an orchestration plan (Task P3). We assign each layer
to an instrument or a group of instruments, taking care of the balance between
the different timbres. We have developed a Markov model for this stage, that
uses probabilities of finding instruments together, of instrument sequences, and
instrumental density, building from instrumentation presets as well as from a
segmentation of the score (Section 7.3).
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7.2. Creating the Layer Scores for Angeles

• The last step is to write the actual instrumental parts (Task T7), following the
orchestration plan and taking care of the peculiarities of range and dynamics
of each instrument (Section 7.4). Our orchestrators proceeded manually for this
step.

For this experiment, the first and third step were done by human orchestrators, who
are also part of the research team for the project: Mael Oudin (professional orchestra-
tor, PO), and Mathieu Giraud (amateur orchestrator, AO). The human-AI co-creative
interaction is here mostly concentrated in the second step of the framework introduced
in Chapter 4. We neither claim that this three-steps process fully models the art of
orchestration, nor that it represents an optimal process, but rather that it is a plausible
workflow to orchestrate a piece. The process could be followed by human orchestrators
alone, but this experiment shows that the framework can be practically implemented
in a way that allows the interaction between humans and AI.

The rest of this chapter details those three steps (Sections 7.2 to 7.4) and the results
of this orchestration model, analyzing the roles of the actors – MIR researchers, orches-
trators, and computational models. Following that is a discussion of the challenges
encountered, our positioning in computational creativity research, and perspectives
(Section 7.5).

7.2. Creating the Layer Scores for Angeles
For this project we went through a completely manual creation of the layer score starting
from the original piano scores. It is a “creative analysis” process [7], since the analysis
is done in support of the creative orchestration process. The orchestrators analyze the
pieces to identify layers, and they rewrite the notes into the separate staves of the layer
score, one staff per layer. At this point they need to do some abstraction from the
typically pianistic textures they might find. After the purely analytic part, the artist
is allowed to modify the existing layers, and to add new ones, while being careful in
respecting the style and the intentions of the author. This leaves more creative freedom
to the orchestrator, allowing for personal interpretation, and for the adaptation of the
layers to the envisioned orchestral ensemble.
We illustrate our methodology through the first two measures of El Jardin Etereo, the
last movement of Angeles (Figure 7.2). In the layer score, we have separated into two
different staves the melodic λmel and rhythmic λrhy1 layers that emerge from the piano
score. We also decided to stress the two last notes in a separate layer λrhy2 and to add
another rhythmic layer λrhy3. Such decisions in the analytical process have their part of
subjectivity and contribute to the co-creativity, allowing to recreate new textures. The
professional orchestrator states:

PO: My role was to make human musical choices during all stages of the AI-assisted
orchestration process. As an orchestrator, identifying the texture is my first job.
Analyzing the piano score allows me to deconstruct the music into different roles:
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7. Co-creative orchestration of Angeles

(a) Piano score

(b) Layer score

(c) Segment instrumentation

SIs1 =


(λmel, {Vc, Cb}),
(λrhy1+3, {Horn1, Horn2, Trp1}),
(λrhy2, {Fl1, Fl2, Cl1, Cl2})



(d) Full orchestral score

Figure 7.2.: First two measures of movement 6 “El Jardin Etereo” from Angeles by Gissel
Velarde, op. 7. (a) Original Piano score, provided by the composer. The
main melody is at the bass, and the right hand plays a rhythmic layer. (b)
Layer Score elaborated as an intermediate step of the orchestration pro-
cess. A melody in the low register λmel, and a rhythmic layer λrhy1 have
been directly identified by splitting the right and left hand of the piano
score. Other layers (λrhy2, λrhy3) have been added to stress the importance
of some notes and to have more possibilities of rhythms, departing from
a typical pianistic texture. (c) Segment instrumentation for segment s1,
assigning instruments to each one of these three layers. The human or-
chestrator decided to have one rhythmic layer λrhy1+3, with added notes in
the downbeats. (d) Orchestration of the piece by Mael Oudin. The instru-
mental parts have been written following the selected orchestration plan.
Scores and rendered audio for selected extracts of the piece are available at
http://www.algomus.fr/data.
 http://algomus.fr/fm/angeles6-1-4.mp3
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7.3. Creating Personalized Orchestration Plans for Angeles

the main melody, harmony, rhythm, resonance. . . I prepare the addition of new
parts. The piano is limited by its technique. As I orchestrate, I will add what is
“absent but suggested”, resonance, missing registers, textures to be recreated. The
first stage involved the creation of the “layer score” for this movement.

Creative “human musical” choices, such as adding a layer, can already be made at this
stage, going beyond a pure analysis of the original score. For example, a music pattern
may have at the same time a melodic and an harmonic role. In that case, the layer score
could define a mixed melodic/harmonic layer or two distinct layers (see Section 7.5).

7.3. Creating Personalized Orchestration Plans for
Angeles

We recall briefly our model for an orchestration plan (Section 3.3), which is a function
that assigns a group of instruments to any layer in a layer score. When producing the
layer score, or starting from the layer score, the orchestrator is segmenting the piece into
orchestration segments, which are portions of the piece in which the texture is funda-
mentally homogeneous, and on which the orchestrator wish for a substantially constant
instrumentation. We decide to express the orchestration plan as a set of segment in-
strumentations (SI), one for each orchestration segment of the score. Each segment
instrumentation will match every layer in the segment to its layer instrumentation, i.e.
a set of the instruments that should play that layer.

7.3.1. Generating Orchestration Plans with Markov Models
Once they have set the orchestration segmentation, the artist could themselves write
the layer instrumentation for every layer in every segment of the piece, and create
manually an orchestration plan. For this project, instead, we decided to have a simple
knowledge-based algorithm to experiment with AI-human interaction. This model for
semi-automated layer instrumentation follows two goals. The layers should include
instruments that blend together. These are drawn from presets of possible instrumenta-
tions (defined later). Moreover, the “loudness” of the instrumentation at each segment
should be close to the musician’s desired outcome, for which they provide a loudness
profile as input. These concepts are detailed in the following paragraphs.

Loudness profile and acoustic weights. To underline the form, the musician inputs
a loudness profile as a list of targeted loudness values (L1,L2, . . . ,Ln) for the n segments.
The effective loudness depends on the dynamics, but also on the number and the
qualities of each instrument1. A simple model is to consider that each instrument i
has an acoustic weight wi. We decided here to have higher coefficients for brasses and
instruments of lower range, using the following values, selected by the professional
orchestrator in our team based on his experience:

1We call “instrument” an instrument group. Groups may include several people (for example, Vl1).
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7. Co-creative orchestration of Angeles

(Fl:1, Ob:1, Cl:1, Fg:1.5, Hrn:1.5, Trp:2, Vln1:1, Vln2:1, Vla:1, Vc:1, Cb:1.5)

The loudness could be directly estimated by combining the weights of the instruments
involved (by summing them in a linear or logarithmic scale). However, selecting only
the instruments according to such values would not realize a proper orchestration, as
it would ignore blending qualities and orchestrator preferences. We proceed instead in
defining possible layer instrumentations.

Possible instrumentations. For each layer λα ∈ Λ, the musician will thus define a set
of possible layer instrumentations pℓiα = {pℓiα1 ,pℓiα2 , . . .}, each one being a weighted list
of instruments. For instance, a rhythmic layer λrhy1 could be associated to two distinct
instrumentations, either on woodwinds, or brasses:

pℓirhy1 =

{
pℓi

rhy1
wood

= (Fl : .3, Ob : .1, ClBb : .2, Fg : .15) L(pℓirhy1
wood

) = .825
pℓi

rhy1
brass

= (HrnF : .7, TrpBb : .2) L(pℓirhy1
brass

) = 1.45

Each component (i, fi) tells that the instrument i should have a probability fi of being
used in this pℓi. The actual instruments that will be used will be a subset of that pℓi.
Selecting a pℓi ensures that these instruments blend together for this particular layer.
The sum

∑
fi of the probabilities of a pℓi is the expected number of instruments in that

pℓi. We rather use the expected loudness of the pℓi, that is L(pℓi) =
∑

wifi, weighting
each probability by the acoustic weight of each instrument.

Selecting the pℓi, then the instrumentation for each segment. Given a layer λα ∈ Λ

and a segment s ∈ {1, 2, . . . ,n}, the pℓiα,s is selected in pℓiα according to a Markov
model (Figures 7.4 and 7.5) that depends on the previous pℓiα,s−1. In order to match
the prescribed loudness Ls, the model also tries to minimize δα = |Ls − L(pℓiα,s)| by
further multiplying by a penalization coefficient e|δατ|, with τ = 2.0.
For a given segment s, once all pℓiα,s are selected for all layers λα, instruments are as-
signed following the individual probabilities fi. At the end of this step, it may happen
that either a layer has no instrument assigned, or that an instrument is assigned to more
than one layer. A new iteration of the assignment, based again on the fi in the pℓi, is
used to resolve such cases.

The personalization of the AI “to the style of the orchestrator” is thus obtained through
the parametrization of the presets/pℓi selections. The possibility to steer the AI is
also offered by the loudness profile input. Moreover, the implemented method gen-
erated segment instrumentations (SI) with three levels of relative loudness for each
segment (Figure 7.3b), enabling the orchestrator to further select instrumentations at
each segment, but still keeping the coherence of the pℓi.

7.3.2. The orchestration plan of Angeles
According to our orchestrator, there are several goals that a good orchestration should
pursue: respecting and enhancing the piano composition, a good balance between
layers (especially, the melody should not be muzzled by accompaniment), variation
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7.3. Creating Personalized Orchestration Plans for Angeles

(a) Loudness profiles
LOUDNESS = [ 0.20, 0.40, 0.20, 0.50, 0.30, 0.40, 0.20, 0.50,

0.30, 0.50, 0.30, 0.60, 0.40, 0.50, 0.60, 0.70 ]

(b) Generated orchestration plans, with several relative loudness
InstList: <Fl.Ob.ClBb.Fg|HrnF.TrpBb|Vln1.Vln2.Vla.Vc.Cb>
## Gen 104a (0.5) 104b (1.0) 104c (4.0)
[p01] <..2.|13|...m.> <2.2.|13|...m.> <2.2.|13|...mm> {0.20}
[p02] <....|..|123mm> <....|..|123mm> <...3|m3|123mm> {0.40}
[p03] <....|13|..2m.> <....|13|.22m.> <....|13|.22m.> {0.20}

(c) Final orchestration plan
InstList: <Fl.Ob.ClBb.Fg|HrnF.TrpBb|Vln1.Vln2.Vla.Vc.Cb>
[p01] <2.2.|13|...mm> 1:rhy1:brass 2:rhy2:wood 3:rhy3:brass m:mel:mel2 (0)
[p02] <....|..|123mm> 1:rhy1:string 2:rhy2:string 3:rhy3:string m:mel:mel2 (4)
[p03] <....|13|.22m.> 1:rhy1:brass 2:rhy2:string 3:rhy3:brass m:mel:mel1 (0)

Figure 7.3.: Creating the orchestration plan of Angeles, mvt 6. (a) The score is split by the
musician into 16 instrumentation segments, each with a target loudness. (b)
The model generates, for each segment, three layer instrumentations taking
into account the expected segment loudness and another relative loudness
coefficient (0.5, 1.0, 4.0) (c) In the selected orchestration plan, for the segment
[p01] (first two measures), there are four layers instrumentations ℓrhy1|brass,
ℓrhy2|wood, ℓrhy3|brass, and ℓmel|mel2. The layers are mapped to the instruments
appearing in the order declared in InstList: For example, the ·"<2.2.|"
bloc in the woodwinds refers to the layer instrumentation ℓrhy2|wood, with
here flutes (Fl) and clarinets (ClBb).

(contrasting moments in the piece should carry different orchestrations), and efficient
dynamics (through loudness values and coefficients).
Respecting the piano composition means that the score brings constraints in register and
dynamics that need to be reflected in the orchestration plan. For example, movement 6
was a Vivace, with the melody on the bass and an accompaniment more rhythmic than
harmonic. The orchestration then had to address the character of the piece and abide
by the register of each layer.

PO: The bass melody could only be performed by three instruments in the orchestra:
the cellos, the contrabasses, and the bassoons. But not every choice would give a
satisfying balance to the other layers played by the rest of the orchestra. The bassoons
or contrabasses alone, for instance, would not be prominent enough so cellos were
necessary here. Any generated orchestration plan that would not nominate cellos
for that layer would be in practice almost unusable.

Balance in an orchestration is also reached through the separation of the orchestra into
different groups (namely, the strings, the woodwinds, the brass, and the percussion).
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pℓi
mel,s−1
H1 −→ pℓi

mel,s
H1 : .8 pℓi

mel,s−1
H2 −→ pℓi

mel,s
H1 : .6 pℓi

mel,s−1
B −→ pℓi

mel,s
H1 : .3

−→ pℓi
mel,s
H2 : .6 −→ pℓi

mel,s
H2 : .8 −→ pℓi

mel,s
H2 : .3

−→ pℓi
mel,s
B : .1 −→ pℓi

mel,s
B : .1 −→ pℓi

mel,s
B : .8

Figure 7.4.: Extract of the transition table of the Markov model modeling the evolu-
tion of pℓimel = {pℓimel

H1 ,pℓimel
H2 ,pℓimel

B , . . .} for movement 6. The transition
table was created through iterations between the MIR researchers and the
orchestrator. These coefficients are further adjusted by a loudness factor,
then normalized.

Harmonic blending is best achieved when all the notes of a chord are performed by
instruments in the same group. This was a constraint to our model if we wanted to
avoid too much disparity in the instrument combinations proposed in the orchestration
plans. Movement 6 had a continuous 3-voice rhythmic layer and we wanted these three
voices to be performed by instruments from the same group. This wasn’t always the
case in the orchestration plans generated so this was also a criteria in the selection of
the best outputs.
The ensemble of these parameters creates many constraints on orchestration possi-
bilities, so one of the first human tasks when analyzing the output generated by the
model is to remove what seems impossible, for reasons as varied as register limitations,
number of voices to be played, and poor blending or contrast. Perspectives include
(semi-)automatizing some of these tasks. At the same time, the challenge was to fore-
see the potential of each generated combination when formalized into a musical score
at the next stage of the process. Some combinations, such as opening the rhythmic
layer with brass only, were unexpected by the orchestrators but rather “proposed” by
the model (Figure 7.3c).

PO: I worked on the outer sections of “El Jardin Etereo” using several dozens of
orchestration plans generated by the model. It was my responsibility to sort through
them and select the most convincing ones according to my taste (while also being
open to surprises).

7.4. Writing and Performing the Orchestral Score
Once the orchestration plan is decided, the orchestrator has a large space of possibilities
related to the range, dynamics, and playing techniques of each instrument that can still
be creatively explored. The orchestration plan only suggests the instruments to be used
in every portion of the piece, but many decisions still need to be taken to get a playable
score, in particular to have idiomatic patterns for each instrument of the orchestra.
In the final orchestral score, on the same first two measures (Figure 7.2d), the choice
has been made to fill the rest of the first beat of the rhythmic texture to provide a more
efficient and easier line to the brass instruments at this fast tempo. The rhythmic layer
is then rendered differently from the original pianistic texture, but it preserves the
intention. Likewise, the choice of writing pizzicati for the contrabass part, to lighten
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Figure 7.5.: Example of pℓi selection with the Markov model. For any segment of
the piece, and any layer of the segment, the model selects the pℓi based
on the pℓi for the same layer in the previous segment. The probabilities of
selection depend on a transition table with weights that are always the same
(here represented by the numbers on the red arrows), and on the distance
from the target loudness. The model tries to match the desired loudness
(here represented by the graph above). The coefficients from the transition
table are multiplied by a penalization coefficient representing the cost of
the loudness mismatch. In this case the woodwind pℓi will have higher
probability of being selected, since it matches better the target loudness
profile, even though the coefficients from the transition table would favor
the brass choice in general.

the orchestral texture and express the mezzo-piano dynamic, was taken at that stage of
the process.
Our orchestrator shared some reflections on the artistic side of this final step:

PO: The distribution of instruments is suggested by the model, but there is still
considerable freedom in the choice of notes and registers. It is also up to me to choose
and indicate nuances, phrasing, playing modes and expressive indications. Some of
the model’s choices wouldn’t have been what I would have done, like starting directly
with the trumpets at the beginning of movement 6. But it’s stimulating!

Movement 2 Inexorable and the outer sections of movement 6 El Jardin Etereo have been
orchestrated with this procedure whereas the middle section of movement 6 has been
orchestrated with a “traditional” method. The other movements have been commis-
sioned to orchestrators outside of our team. The whole suite has been performed by
the Orquesta Kronos conducted by Andrés Guzmán-Valdez at Nuna Theatre in La Paz,
Bolivia, on the 19th of July 2023 (Figure 7.6).
The experience of working with different versions of the model, with increased im-
provements, showed that the AI-assisted method begins to offer a gain in productivity
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Figure 7.6.: The whole suite Angeles, including our co-creative orchestrations for move-
ments 2 and 6, has been performed by the Orquesta Kronos conducted by
Andrés Guzmán-Valdez at Nuna Theatre in La Paz, Bolivia, on the 19th of
July 2023.
 http://algomus.fr/fm/angeles-piano-orchestra-video.mp4

once the orchestration plans start to be more reliable. It is also a tool for creative
thinking:

AO: Like any creative work, an orchestrator may face the anxiety of the blank page.
Especially as an amateur orchestrator, I enjoyed having such suggestions. Even
when they were inappropriate, they stimulated creativity through reinforcement,
contrast, or opposition.

7.5. Discussion and Perspectives
In [61] the use of low-tech AI is advocated, to ease the communication between the
composer and the researchers, and to obtain tailor-made models with scarce data. We
adopted a similar approach here, and we focused on modeling the process of orchestra-
tion by identifying possible steps that can be accomplished with human-AI co-creative
interaction. The computational model used to generate orchestration plans has been
conceived and designed with a continuous back and forth between the artist and the
research team. It is meant to be the simplest possible, so that it can be more easily
modified to experiment with different inputs and controls. Concepts like loudness
profiles and coefficients have been added to the model to respond to the ideas and the
necessities of the orchestrator.
The results and the testimonies of our orchestrators lead us to believe that we have
succeeded in individuating three well-separated stages of orchestration (Figure 7.1),
which could be performed by three different (human or algorithmic) actors. Each step
included a self-refining feedback loop. For example, the human task at the final stage of
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7.5. Discussion and Perspectives

the process (3. writing the orchestral score) can be described in two phases, the second
of which is usual for "traditional orchestration": (3.1) interpret and adapt the orches-
tration plan, (3.2) write notes for the instruments. In the first stage, the orchestrator
will read the output made by the machine and mentally link it to the score to find the
best strategy to transform these outputs into music notes (this phase is fundamental to
selecting the best outputs from the machine). The second phase consists of writing the
notes idiomatically for the instruments, but also the dynamics and the phrasing and
expressive instructions.
The model applied here has limitations. The process is not always linear: it was some-
times in phase (3.2) that choices made in phase (3.1) retrospectively appeared to be
pitfalls, and the entire process had to be made again (when, for example, a particular
arrangement was not compatible with the plan selected for the subsequent section).
Other points could also be improved, as for example the formation of mixed layers.
More generally, a challenge is to better model large-scale orchestral thinking. Orchestral
contrast is typically achieved when the same instrument (or combination of instru-
ments) is not used in the same way in two successive contrasting parts. This may lead
orchestrators to “reserve” an instrument on purpose for a specific moment in the piece.
Somehow, the pℓi presets combined to the acoustic weights and the targeted loudness
profiles help such a large-scale homogeneity and steerability, but these models could
be refined.

Looking back to the categories proposed by Kantosalo and Jordanous [134], we have ex-
perimented with a process rooted in the interaction between the computational models
and the artist, in which the role of the model could be described as in between AI as a
colleague and AI as a tool, having some characteristics of both. Dividing the orchestration
process into steps has facilitated the introduction of computational models. In this way,
the role of the AI is to act on a well defined and specific task, making the model an
essential tool in the overall process. The algorithm is acting on the product of human
actions (the layer score), and is enabling further human processing with its output
(writing the final orchestral score). At the same time, the model is able to “suggest”
unforeseen ideas to the humans, acting more as a co-creative colleague, who can inspire
and enhance the inspiration of the human artist. Some questions remain open: Is the
human or the machine in control? What is the perceived role of the AI? A more thorough
investigation on agency [141] and on the perception of the model by the human artists
involved in the process is to be explored in future studies.
Any co-creative project confronts us with questions related to the authenticity and the
ownership of the such art [181]. When dealing with AI-generated art, ethical, legal, and
moral concerns emerge, questioning the status of the product itself as having artistic
qualities [180]. In this research and creation project, the development of the algorithm
and the artistic creation of the orchestrated score were intertwined processes. For this
reason, the scores have been signed with Orchestrated by Mael Oudin and the Algomus
team (mov. 6) and Orchestrated by Mathieu Giraud and the Algomus team (mov. 2), recog-
nizing authorship to all members of the project, musicians and computer scientists, but
not to the AI model.
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In summary, with this project we first proposed and applied our framework for AI
assisted orchestration, in which the orchestrators craft their art in collaboration with
AI algorithms. We divided the process into three steps, modeling layer scores and or-
chestration plans as intermediate objects. The code for generating orchestration plans
is available under an open-source license at http://algomus.fr/code. Through this
preliminary project, this approach has proven to be effective in formalizing the art
of orchestration, enabling the involvement of both machine and human actors, each
contributing at different moments. The possibilities for the employment of AI in the
process are not limited to the ones selected for the scope of this project. Perspectives
include modeling other tasks in the process with Deep Learning AI, both for texture
analysis tasks related to the creation of the layer score, and for constrained notes gen-
eration, in the creation of the final score. Co-creative interactions would be allowed
through model parameters, and through creative modifications of the outputs at several
stages: when writing the layer score, the orchestration plan, and the final rendering
of the notes. Some of these ideas are examined and experimented in Chapter 8 of this
thesis in which we try to address orchestration tasks using Deep Learning models with
a Transformer architecture. All these steps can be accomplished partly by the machine
and partly by the human being, with a fruitful continuous exchange of information.
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8. Orchestration with Transformers

In this last chapter we present a series of experiments in AI-assisted orchestration with
Transformer models [265], aimed at performing some orchestration-related generative
tasks. Similarly to what we did for the Angeles project (Chapter 7), our objective is
to conceive and develop algorithms and models that can be used by professional or
amateur orchestrators in a co-creative way. Like in the previous chapter, we aim to
build models that go beyond the AI as a tool and that can act as a co-creative colleague.
In the context of our framework for co-creative interaction in orchestration (Chapter 4),
we separated the orchestration process in three steps. The models that we describe here
focus on the second and third steps, and aim at generating orchestral scores conditioned
to the input of a layer score (Task T6) and possibly of an orchestration plan (Task T7).
We base our model architecture on SymphonyNet [158], and we try to adapt it to our
goals. Our main contribution is an extended tokenization strategy, allowing to repre-
sent different objects like orchestral scores, with or without texture annotations, layer
scores, and orchestration plans. This proposal of an extended tokenization was part
of a first submission to the ISMIR conference, but the work was too preliminary to
be accepted. Even though the results are not always satisfactory, we report here a
complete chronology of the experiments conducted, along with some reflections on
each of them, which may be useful to those who intend to pursue research in computer
assisted orchestration.

This chapter is organized as follows. We start by presenting our new tokenization
framework, common to all experiments, that has the capacity to simultaneously encode
orchestral music, layer scores, and orchestration plans (Section 8.1). Then Section 8.2
is divided into four parts, corresponding to each of the experiments that have been
conducted. Finally Section 8.3 tries to draw some conclusions and to lay the basis for
further work.

8.1. An Extended Tokenization of Music and Texture

To process data with Transformer architectures (see next section) we need to encode
the information into a sequence of tokens. In this section we present a comprehensive
strategy to tokenize both music and texture information. We extend the SymphonyNet
tokenization method [158] with new textural and structural tokens, identified in the
text below with a bell (�) and summarized in Table 8.1. These new tokens describe
orchestral texture according to Section 3.1 and [149], and can be used in combination
with the original SymphonyNet tokens to model orchestration tasks from Table 4.1
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8. Orchestration with Transformers

involving multiple objects (for example task T6 Layer Score Orchestration). This to-
kenization strategy unifies the representations of different objects (orchestral music,
texture annotations, layer scores, and orchestration plans) into one approach using the
same tokens (Figure 8.1). Similarly to the Compound Word [116], and the Octuple [282]
tokenization stategies, the Multi-track Multi-instrument Repeatable (MMR) represen-
tation used in SymphonyNet uses embedding pooling to merge in the same “compound
token” different characteristics of notes and structure elements. Those different aspects
are organized in separated vocabularies, and are converted to embeddings indepen-
dently in the model. They are then summed together (merging/pooling) as for the
position embedding. The following tokens are used (Table 8.1):

Instrumentation Voc. Occ.
(�) IIEi Instrument i in ensemble 14 176518
Structure

BOS Beginning of score (or training example) 1 8686
EOS End of score 1 8686

(�) BOT Beginning of textural section – –
(�) EOT End of textural section – –

BOMℓ Beginning of measure of length ℓ 51 104232
POSj Position j in the measure 97 1523705
NT New Track 1 696635

(�) BLS Beginning of layer score 1 8686
(�) BOP Beginning of orchestration plan 1 8686
(�) BFS Beginning of full orchestral score 1 8686
Layer
(�) Rolei Role (melody, harmony, rhythm, sparse) 5 490206
(�) Relunison Relation (unison, parallel, homorhythm) 4 490118
(�) TILt Track t in layer 40 1568378
Chords and Notes

Chordc Chord c 134 104232
Pitch Pitch 127 2326690
Duration Duration 32 2326690
Track Track 40 2797235
Instrument Instrument 14 1461631

Table 8.1.: Token types, with the number of their appearances in the vocabulary (Voc.)
and their occurrences (Occ.) in the finetuning data with the layer-plan-full
strategy (Figure 8.4c) used in the last experiment (Section 8.2.4). For example,
there are 14 different IIEi tokens in the vocabulary, one per instrument i, and
they appear overall 176518 times in the finetuning data. Notice that the track
number is embedded also for other things than notes (for example in the
orchestration plan), and that the instrument is not embedded or predicted
for every note (for example in the layer score).

• Instrumentation (�): The optional IIEi tokens, where i represents an instrument,
can be used to weakly constrain the orchestral generation on the available en-
semble. According to the task, they can be positioned at the start of the piece or
elsewhere.
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(a) Full orchestral score with tex-
tural labels

(b) Layer score (with textural
labels) (see Section 3.2)

(c) Texture annotations,
interpretable as an
orchestration plan
(see Section 3.3)

[3] <0har0r0>

a:-u

h:harm-p

r:rhythm-u

(d) Full orchestral score with tex-
tural labels tokenization

(e) Layer score (with textural la-
bels) tokenization

(f) Orchestration plan
tokenization

Figure 8.1.: Tokenization of the first movement of Symphony No. 9 by Beethoven with
a measure-level description of orchestral texture and layers. Tokens are de-
fined in the main text. The figure focuses on the 3rd measure, where horns
are playing an harmonic layer in parallel homorythmy (RoleharmonyRelparallel),
first violins a front layer with unspecified role, in unison (Relunison), and sec-
ond violins and cellos a rhythmic layer in unison (RolerhythmRelunison). (a)
Reference full orchestral score. (b) Reference layer score. (c) Reference tex-
ture annotations. (d) Tokenization of the full orchestral score with textural
labels. The instrument is given for each note token, and TILj indicates which
tracks belong to the same layer – such as the altos and cellos (TIL6 and TIL4).
(e) Tokenization of the layer score. Instruments are not given, but each layer
is represented with its role and relation. Here the rhythmic layer between
altos and cellos is given only once. (f) Tokenization of the texture anno-
tations alone, interpretable as an orchestration plan, describing the layer
repartition without the notes. Other data could be encoded similarly, as for
example a multitrack score without texture tokens. The three encodings
reported here are only some examples. We used this precise tokenization
in the first of our experiments, but in some others we used different token
orders and we included more or less information.
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• Structure: Begin/end of a piece/score, of a textural section (�), of a measure of
length ℓ, of a layer/full score segment (�), of an orchestration plan segment (�),
and position in the measure j ∈ [0, ℓ]. Lengths and offsets are expressed in 32nd
notes, and a measure is a quantized grid [158].

• Track: A token indicates the start of a new track (NT), decoupling the track infor-
mation from the instrument information. In all our experiments, the track changes
multiple times within a measure, and the NT token separates notes belonging to
different tracks in the given measure.

• Layer description and composition (�): Specific tokens can describe zero, one, or
several layer role(s) and possible in-layer relation following [149]. Their placement
depends on the model, for example at the start of each track or at the start of a layer
(in an orchestration plan). A list of TILt, track t in current layer, can be used to
describe the composition of a layer. It can be placed in every track, asserting that
track t is in the same layer than the current track (see altos/cellos on Figure 8.1d).
Or it can be used to describe the composition of a layer in an orchestration plan.

• Chord: At each measure, a token is used to describe harmonic content. Harmony
is not always stable in a measure, but this token has proven to be effective [158].

• Notes: Notes are represented by a compound token, which immediately follows
a position POSj token (already discussed in structure). The compound token
merges a group of four tokens: Pitch, Duration, Track, and Instrument. These four
pieces of information are embedded separately and the embeddings are summed
in the model. Not all four tokens are compulsory, SymphonyNet [158] does not
embed the instrument information in the model input but it does estimate it in
the output, and tracks could be dropped if we are not interested in separating
repeated instruments.

Compound tokens can be used not only for notes: the NT token, position tokens, and
texture tokens (depending on the use) can also be pooled with the track information.
In order to simplify embedding pooling, tokens are organized into five vocabularies:
event (instrumentation, structure, chord, and pitches), duration, track, instrument, and
texture (layer description and composition). The vocabulary sizes are respectively 432,
39, 47, 21, and 56 tokens, with a total of 567 distinct individual tokens (Table 8.1)1. These
tokens allow to represent most input/output orchestral data presented on Table 4.1 in
a cohesive way:

• Full orchestral score, with texture analysis: all tokens, including texture. IIEi

tokens are optional, since their information is already carried by the Instrument
token at every note event.

• Multitrack score: all tokens, except texture tokens with layer description and
layer composition. IIEi tokens are optional.

1Summing the sizes of the five vocabularies gives a number that is grater than the total number of
individual tokens, since 7 “special” control tokens are replicated in all of the 5 vocabularies
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• Layer score: all tokens, except IIEi, and TILi. Only one track per layer should
be present. There is no embedding of the instrument information, since layer
scores have no instruments. In certain experiments we embed a special “LAYER”
instrument instead.

• Orchestration plan: all tokens, except positions and notes.

Chordc, NT, and texture tokens, are placed within each BOMℓ / EOMℓ pair, as in
SymphonyNet (Figure 8.1), together with the positions and notes inside each track.
They could also be placed into a larger BOT / EOT pair to group together measures
with the same texture.
Figure 8.1 shows some of the proposed token sequences on the opening of Beethoven
9th symphony. Note that the tokens representing layers in the layer score and in the
orchestral score are ordered differently. More generally, certain token sub-sequences
have to be “permutation invariant”: the tracks can (and, to prevent overfitting, have to)
be presented in any order.
We also adopt the 3D position embedding following [158], with the three axes note
order (semi-permutation variant), measure order (semi-permutation variant), and track
(permutation invariant).

8.2. Experiments
We report here a series of experiments with models extending SymphonyNet [158]
with the extended tokenization strategy presented in the previous section. In these
experiments we attempt to model some orchestration tasks from Table 4.1 taking into
account texture and layers: (U1) Unconstrained Symphony Generation, (C1) Harmony
Constrained Symphony Generation, (S1) Unconstrained Reorchestration (reinstrumen-
tation), (A1) Orchestral Texture Analysis, (T6) Layer Score Orchestration, and (T7)
Texture-constrained Orchestration from Layer Score.

8.2.1. First Modeling Experiment: Adapting SymphonyNet with Texture
In the first experiment we applied little modifications to SymphonyNet [158], trying to
model the tasks of unconstrained generation, harmony-constrained generation, uncon-
strained reinstrumentation, texture analysis, and layer score orchestration.

8.2.1.1. Model Description

Proof-of-Concept Model Architecture. We extend SymphonyNet [158], an auto-regressive
model based on a decoder-only linear Transformer architecture, with a semi-permutation
invariant 3D embedding. The model has now five feed-forward heads, to classify the
outputs: instrument, track, duration, event, and texture. The tokens are collected into
five vocabularies, they are embedded independently, and pooled. Instrument informa-
tion is not provided in the input, forcing the model to learn how to do “instrumentation”
(instrument classification) on the side.
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Figure 8.2.: Task (U1), some “best extracts” humanly selected from unconstrained gen-
erations by the (left) pre-training and (right) fine-tuning models.
 http://algomus.fr/fm/generated-pretrained.mp3

 http://algomus.fr/fm/generated-finetuned.mp3

Tokenization. We implement a tokenization for the full orchestral score (with and
without texture annotations), and for the layer score, as described in Section 8.1. We
do not apply Byte Pair Encoding to our tokens, as it would create supertokens that
are too connected to the corpus, making a pretrained model less suitable for transfer
learning. The permutation invariance option from the original SymphonyNet was also
deactivated in this first experiment, to handle more easily the relationship between
track numbers and TILt tokens.
Dataset and Training Strategy. The corpus gathers 20,000 multi-track MIDI files from
SymphonyNet [158] as well as 7 (expanded to 21 in the following experiments) of the
24 movements of classical and early-romantic symphonies annotated with texture and
layers from Chapter 5 and [149]. As the latter is too small to train a large generative
model, we adopt a transfer learning strategy. We first pretrain our model on the large
corpus (99% training, 1% validation), and finetune it for different tasks using the texture
and layer corpus. For both trainings, we hold out one piece as our test set. Pretraining
took 48 hours on a high-performance server equipped with 2 GPUs Nvidia Turing RTX
2080 Ti2. Finetuning for the tasks described in the next section took about 1 hour per
task.

8.2.1.2. Tasks Details and Results

We finetune the model to perform the following tasks (compare with Table 4.1).
(U1) Unconstrained Symphony Generation. As in the original SymphonyNet model, the
outputs are, in our opinion, far from being close to a “well-orchestrated score”. Indeed,
the model outputs pitches relevant to some harmony, that is most of the time within
a coherent tonal progression, but lacks long-term coherence and consistent phrasing.
However, outputs of the new model seem to exhibit more “classical-romantic” textures
that may have come from the additional data and texture/layer modeling (Figure 8.2).
It should be noted that many other passages do not exhibit the same good quality.
These best examples are weak compared to what can be written by human orchestrators
(and contain instrumentation errors), but the new model seems to output more layered

2Server provided by the Mésocentre de Calcul Scientifique Intensif de l’Université de Lille, https:
//hpc-doc.univ-lille.fr/
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music, with, on that example, winds entering at the second half of the extract. To
evaluate whether this improvement could come from the new texture data, we run an
internal blind test to evaluate the texture of unconstrained generations from the model
finetuned with the same finetuning corpus. On one side, we included texture tokens
(3/5 acceptable textures), and, one the other, we did not include them (1/5 acceptable
textures).

(C1) Harmony Constrained Symphony Generation, (S1) Unconstrained Reorchestration (re-
instrumentation). Processed with the same model but with a different sampling pro-
cedure, these tasks give similar results. Like for the unconstrained generation, these
functionalities are already possible with SymphonyNet [158].

(A1) Orchestral Texture Analysis. We finetune the model for texture analysis by making
the model predict a sequence of tokens representing the texture annotations from
the content of a measure. We achieve that by inverting the position of layer tokens
and note tokens in each track of a measure with respect to Figure 8.1d. The model
achieves a cross-entropy loss for texture prediction of 0.967 on the test set. Further
investigation work should be done to understand these results, both in statistical and
musical terms. A more suitable target loss, and adequate texture recognition metrics
should be developed. In the following iterations of the model, however, we completely
abandoned the texture analysis task, to concentrate our efforts on generative tasks.

(T6) Layer Score Orchestration. To keep the same basic architecture than the previous
tasks, we alternate the tokens for one measure of the layer score and one measure of
the full orchestral score (see Figure 8.4a). The model is therefore finetuned to generate
the next measure of an orchestration from the layer score for that measure and a given
context (the previous measures layer score and orchestral score). The results on this
task are deceiving. We were able to obtain an orchestration of a toy example (Figure 8.3)
which respects the given layers. However, no other successful example of orchestration
could be produced, with the model reacting as in the unconstrained generation task.
We initially attributed this behavior to the structure of the training examples, with
alternated measures between layer scores and orchestral scores. We interpreted that
the model learned how to create a new layer score, and not only how to orchestrate
a layer score. We see in the next experiments, that the problem persist also with
more careful presentations of the finetuning data. The problem of having the model
reproduce a given sequence of notes, like a melody, in the output is very hard to solve
with weak constraints, like texture tokens in the sequence [242, 150].

8.2.2. Second Modeling Experiment: New Sequential Strategy for
Finetuning, Separating Layer Scores from Orchestral Scores

In the second iteration of the model we focus on generative tasks, and in particular on
unconstrained and texture-constrained orchestration (T6 and T7), which are still open
and unsolved problems. We keep the same pretraining structure, but we modify the
way we present finetuning examples to the model, and the sampling strategy.
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Figure 8.3.: Task (T6), orchestration from a 3-part layer score of the popular theme
Twinkle Twinkle Little Star. Given the layer score (shown on the top) and an
orchestration of the first two measures, the model re-instrumented these
two measures and generated an original orchestration of the last two ones
(score on the bottom).
 http://algomus.fr/fm/twinkle.mp3
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(a) Alternated strategy used in the first modeling experiment

(b) Sequential strategy used in the second modeling experiment

(c) Layer-plan-full strategy used in the third and fourth modeling experiments

Figure 8.4.: Comparison of different fintuning strategies for the unconstrained and the
texture-constrained layer score orchestration tasks.
(a) Alternated strategy. In the first modeling experiment the finetuning
examples present measures from the layer score alternated with their re-
spective measure from the orchestral score.
(b) Sequential strategy. In the second modeling experiment the finetuning
examples present four measure from the layer score followed by a separator
token and by the same four measures from the orchestral score.
(c) Layer-plan-full strategy. In the third and fourth modeling experiments
the finetuning examples present four measure from the layer score, an
orchestration plan for the same four measures, and the orchestral score re-
alization of the plan. Separator tokens are inserted between the layer score,
the plan, and the full orchestral score.

8.2.2.1. Model Details

Finetuning and Sampling. We build our finetuning examples in the following way (see
Figure 8.4b). We segment the pieces from the annotated symphonies corpus into
samples of four measure, and we construct examples that present four measures of
layer score followed by the same four measures of the orchestral score, including texture
tokens. The finetuned model can be used to generate layer score orchestrations in two
modes. In unconstrained mode (T6), we give as prompt the measures of layer score,
together with one or two measures of orchestral score, and we sample the remaining
measures of orchestral score. In texture-constrained mode (T7), we do similarly, but
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we enforce the presence of the texture tokens from an orchestration plan after every NT
token.

Layer Score Data. In this phase we made a step forward in the algorithm that generates
layer scores from tokenized orchestral scores with annotations, solving problems related
to the correct handling of out-of-layer notes (discussed in Appendix B.1). Thanks
to these improvements we were able to increase the number of available scores for
finetuning. However the algorithm used here is not yet in its final state (Algorithm 1
introduced in Appendix B). We also reconsider the way we encode instruments in the
model, moving from MIDI name to a smaller set of orchestral instruments.

8.2.2.2. Qualitative Evaluation of the Results

In both cases the model does not produce convincing results. It seems very hard to find
a balance between overfitting and underfitting while finetuning. In the first case, the
generated examples exhibit idiomatic patterns of the classical style of Mozart, Haydn,
and Beethoven, similar to those obtained in the previous experiment on unconstrained
generation (see Figure 8.2), but they are completely unrelated to the provided layer
score. In the second case, the model does not know how to behave after tokens that
were not present in the pretraining phase.

8.2.3. Third Modeling Experiment: Permutation Invariance
Improvements and Implementation Flexibility

In the third experiment we try to make improvements in different directions while
keeping a high level of flexibility, so that different combinations of the new modifica-
tions can be tested. The tasks we study are still unconstrained and texture-constrained
orchestration (T6 and T7).

8.2.3.1. Model and Data Improvements

Model Modifications. Here are some of the different configurations that we have tried.

• We implement a new strategy for texture constrained orchestration (layer-plan-
full, see Figure 8.4c). It consists in presenting the entire orchestration plan to
the model in a position prior to that of the orchestral score. When generating an
orchestration autoregressively, then the model has access to the entire plan.

• We reintroduce the functionalities exploiting permutation invariance that were
present in SymphonyNet [158].

• Segment embedding: we call segments the different parts of a finetuning example.
One segment corresponds to the layer score, one to the orchestration plan, and
one to the full orchestral score.
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• We test with different configurations of the embeddings. For example, we can
embed the instrument information, combine it with the track information, or
replace the track with the instrument.

• We reserve the lowest N track numbers to layer scores (for example N = 10), and
track numbers starting from N + 1 to orchestral scores.

• We test with the smallest possible model.

Data. In this phase we also improve the quality of the layer scores enforcing continuity
of layers between adjacent measures, reaching the current state of Algorithm 1 (Ap-
pendix B). We implement a data augmentation strategy based on transpositions. We
are aware that transpositions can create many orchestration problems. We apply this
data augmentation by taking care that the transposed scores do not contain notes out
of the original range of the instruments.

8.2.3.2. Qualitative Evaluation of the Results and Discussion

While the generated orchestration is generally respecting the harmonic progressions in
the layer score, the melodic lines are never reproduced correctly from the layer score
to the orchestral score. The impression that we have when looking at the generated
examples is that the model is left with too much freedom, and it is not following the
hints given by the texture tokens, that are not real constraints. One way to solve the
problem could be to extend the finetuning data with a lot more manually annotated
examples, but this is out of reach because it would require more intense human labor.
The alternative is to add more constraints to what the model can do. We follow this
second strategy in the next experiment in which we force the output of the model to
contain certain notes.

8.2.4. Last Modeling Experiment: Enforcing Note-Level Constraints
Analyzing the results from the previous experiments, one observation stands out: the
outcomes of the orchestration models resemble unconstrained generation, with mini-
mal connection to the layer score provided as input. Ideally, an orchestration should
preserve the essential elements of the music presented in the layer score, with only
minor adjustments made to adapt the writing to the specified instruments.
In this final experiment, we introduce note-level constraints to the generated sequence.
We maintain the same pretraining and finetuning methods used in the previous ex-
periment (Section 8.2.3) and we modify the sampling strategy by enforcing specific
tokens to appear in the output. Similar constraints were applied in prior experiments;
for instance, in the second experiment (Section 8.2.2), we forced texture tokens corre-
sponding to a specified orchestration plan to appear in the sequence after every NT
token. In this iteration, however, we take this approach further by enforcing specific
positions and notes in the output, following a method similar to that used by Le et al. in
METEOR to ensure melody fidelity [150]. We focus on the task of texture-constrained
orchestration from layer score (T7).
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8.2.4.1. Constrained Sampling Schemes

We introduce two different sampling schemes to force notes from the layer score to
appear in the orchestral score: weakly constrained and strongly constrained mode.
First of all, in both modes, a provided orchestration plan determines the association
between every instrument and the layer it should play. When the output sequence is
generated autoregressively, we know to which track the generated tokens belong, and
which instrument should be playing that track. The token enforcement process works
by stopping the sampling as soon as a specific token is generated, and by inserting
one or more token(s) into the output sequence just after, and by passing the added
tokens through the model. Once this is done, the sampling resumes, using the entire
sequence – including the enforced tokens – as the new prompt for further generation.
The difference between the two modes is given by which tokens trigger the sampling
break and by what is added to the output sequence.
In weakly constrained mode we insert texture tokens after every NT, describing the role
and relationship of the layer to which the track belongs to. We follow the numerical
order for the tracks (track 2 after track 1, and so on). After each position token, we
pause sampling again, we insert any corresponding note tokens from the appropriate
layer score track, if applicable, and then resume sampling. The model is free to sample
positions that are not in the layer score, it can skip positions that instead are in the layer
score, and it can add additional notes to the positions existing also in the layer score. It
can also generate more or fewer tracks than those present in the orchestration plan.
In strongly constrained mode we stop the generation after every NT and we add all the
tokens for the corresponding track, including texture tokens, positions and notes. This
model is then an almost deterministic algorithm that copies the notes from the layer
score into the orchestral score following the orchestration plan. The model is left with
the freedom of choosing the number of tracks to generate, which can differ from the
number of tracks in the orchestration plan. The model can also generate additional
positions and notes in the existing tracks (since nothing forces them to appear in
chronological order in the generated sequence).

8.2.4.2. Qualitative Evaluation

We test both orchestration modes by asking the model to re-orchestrate the beginning
of the first movement of Haydn symphony N. 99, starting from the layer score and
the orchestration plan, and by evaluating how close the results are to the original
orchestral score. The prompt is structured like in Figure 8.4c: we provide four measures
of layer score (Figure 8.5a), four measures of orchestration plan (using as plan the
texture analysis of Haydn’s reference score), and the first two measures of the reference
orchestral score (Figure 8.5b). We ask the model to generate the third and fourth
measure of the orchestral score, and we qualitatively evaluate its resemblance to the
reference orchestral score by Haydn.
We report two examples of outputs generated in weakly (Figure 8.6) and strongly
(Figure 8.7) constrained modes. In the first case we observe still a lot of freedom in
what is generated, even though we recognize some patterns. The main melody is forced
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to appear in the violin 1 part, but not all positions are generated, meaning that some
notes are skipped. At the same time, we have more notes on the vertical dimension:
most of them are directly copied from the layer score, but some (like the high D on
the first beat of the third measure, which we consider a mistake) are generated by the
Transformer. The instruments chosen by the model, also not always correspond to
what is provided as input (there are, for example, three bassoons – FAGOTT). In the
second case, the model almost acts like a procedural algorithm, everything is copied
and pasted from the layer score to the output. Chords in the layer score are copied in
every part, instead of being split between the instruments.
Overall, it appears that the model is not mature enough. However, the approach of
using a hybrid Transformer model with deterministic constraints seems very promising
for future experiments.

8.3. Conclusions and Perspectives
In this chapter, we proposed an extended tokenization method to represent music,
parts, and texture data in orchestral music within the same token sequence. This ap-
proach allows to use the same tokens to represent different inputs and outputs for
different orchestration tasks (see Table 4.1).
We presented four experiments using Transformers to implement tasks in our frame-
work of co-creative interaction in orchestration. Initial results have been promising,
with the extended tokenization approach generating outputs that are closer to the
classical-romantic style (in task U1).
However, orchestration models are still in their early stages of development. Our choice
of using a Transformer model instead of a deterministic algorithm was motivated by
the expectation that Transformers could provide enough flexibility to adapt the parts
in the layer score to the idiomatic patterns of different instruments. The examples
so far have shown that these model have too much creative freedom, making them
difficult to control and constrain. In other words, these orchestration models are im-
provising too much. A promising solution appears to be in the integration of note-level
constraints, creating hybrid models that combine Transformers with deterministic pro-
cedural methods. However, significant improvements and extended evaluations are
still necessary.
Other model architectures should be tested, such as a full encoder-decoder Transformer
for sequence-to-sequence translation between layer scores and orchestral scores. The
scarcity of data for finetuning remains a challenge, which could be addressed either
through automated layer annotation methods (Chapter 6) or by expanding the orches-
tration corpus with new manual annotations (Chapter 5).
Finally, evaluation for such co-creative tasks is challenging, as the results cannot be sim-
ply graded for their resemblance to the ground truth. Multiple “correct” orchestrations
for the same piece might exist beyond the version by the original composer. Addition-
ally, in co-creativity, the value of a model stands also in what it can bring to the human
interacting with it. Quantifying the level of creativity of a model and its usefulness
in an artistic creation process is challenging. Some of these things can be measured
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indirectly with user studies. In this chapter, we only reported a few experiments. The
next step in evaluation could then be the generation of several examples to be rated by
a pool of experts.
Looking forward, further research in the field of orchestration and MIR could explore
how these methods can be refined to develop more advanced and sophisticated mod-
els, address the challenges related to the evaluation of their outputs, and consider their
integration into co-creative systems.
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Figure 8.5.: First four measures from Symphony No. 99 by Haydn: layer score and
reference orchestral score used for the note-level constrained orchestration
experiment. The prompt contains the four measures of the layer score, and
the first two measures of the reference orchestral score.
 http://algomus.fr/fm/haydn99-target.mp3

149

http://algomus.fr/fm/haydn99-target.mp3


8. Orchestration with Transformers

CLARINET

CLARINET

FAGOTT

FAGOTT

FAGOTT

HORN

HORN

VIOLIN1

VIOLIN1

VIOLIN2

VIOLIN2

VIOLA

VIOLA

VIOLA

VIOLA

CELLO

CONTRABASS

CONTRABASS











 



  

   



    


      
     

   
                 





 
  


     


       

 



 
   

   

    
 


 
 


























  
  


  
  
  
  
  
  
  
  
  
  
  




















 
  



 
  

 

   
  

 
  

 
 

 
   

  
   






 

  
    







  








Figure 8.6.: Example of generation with the note-level constrained orchestration exper-
iment, in weakly constrained mode. The first two measures are from the
reference orchestration prompt, the third and fourth are the result of the
orchestration algorithm.
 http://algomus.fr/fm/haydn99-weak-constrained.mp3150
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Figure 8.7.: Example of generation with the note-level constrained orchestration exper-
iment, in strongly constrained mode. The first two measures are from the
reference orchestration prompt, the third and fourth are the result of the
orchestration algorithm.
 http://algomus.fr/fm/haydn99-strong-constrained.mp3 151
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9. Conclusions
In this thesis we proposed a new way of thinking and modeling orchestration, with a
focus on the classical style, and we have shown its value in computer-assisted orches-
tration and orchestration analysis.
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9.1. Summary
After the introduction (Chapter 1), we started by surveying the music theory, music
perception, and MIR literature related to orchestral music and orchestration (Chap-
ter 2).
In Chapter 3 we introduced and formalized three abstract models of orchestration. The
first one is a taxonomy through which we can describe orchestral texture in classical
symphonies as being formed by layers with roles and relations. The second one is the
layer score, which is an abstract version of an orchestral composition, reduced to its
essential elements in terms of layers. Information about the notes in different layers
and about the layer roles is preserved, but no information on the instrumentation is
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given. The third model is the orchestration plan, an object through which the instru-
mentation of the layers in a composition can be prescribed. These three models are
derived from well established concepts from current orchestration teaching practices
and music theory and perception literature. The main contribution from this chapter
is the formalization of these concepts into the three objects, allowing to isolate some
orchestration processes and choices.
In Chapter 4 we presented a framework for the co-creative interaction of human and
algorithmic agents around orchestration. Two main contributions are presented. First,
we organized and reclassified existing MIR tasks related to orchestration by their inputs
and outputs, facilitating the identification of new tasks and challenges, in particular
those involving a layer score and/or an orchestration plan. Second, we formalized
our process for computer-assisted orchestration in three steps, allowing to orchestrate
an existing piece for piano solo: (1) constructing a layer score from the original piano
score, (2) writing an orchestration plan with the instrumentation for each layer, and
(3) combining the information from the layer score and the orchestration plan to write
an orchestral score. The orchestration tasks at every step are clearly identified and the
process can be implemented in different ways, assigning the tasks either to humans or
to algorithms.
In Chapter 5 we presented a corpus, released with open data licenses, containing first
movements of symphonies in the western classical style, composed by Mozart, Haydn,
and Beethoven. The corpus contains scores synchronized to public domain recordings,
and analyzed with the models from Chapter 3. The corpus have been continuously
revised and updated with new material through the duration of this thesis. The main
contribution to science from this chapter is the corpus itself, that can be (and has already
been) used for various purposes by us and by other scientists.
Chapter 6 presented a method based on statistical models and handcrafted features to
detect orchestral blends in scores. Even though the results are still very preliminary, we
were able to show that a data driven approach can match the performance of the state
of the art model, that is a dedicated algorithm. This opens the way to further research
opportunities.
In the last part of the thesis, Chapter 7 presented a research project on human-machine
co-creativity, in which we have applied the framework presented in Chapter 4 to create
orchestrations of two pieces for piano solo from the suite Angeles by Gissel Velarde.
In the process we have generated orchestration plans with a customized probabilistic
Markov model, while human orchestrators have taken care of constructing the layer
scores, selecting the orchestration plans, and writing the final orchestral score. This
project provided both scientific and artistic contributions. It is the first real use case
experiment with our framework for co-creative interaction in orchestration, we have
implemented the first model to generate orchestration plans, and we have collected
feedback from the human artists involved. We also produced scores of the orchestra-
tions of the two pieces, that have been performed live in a concert.
In Chapter 8, we looked at a series of experiments trying to solve orchestration tasks us-
ing deep learning models with the Transformer architecture. The preliminary results
of these experiments are encouraging but not conclusive, suggesting that additional
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research is necessary to develop and train a fully operational Transformer model for
orchestration. The proposed extended tokenization method is the main contribution in
this chapter. It allows to represent orchestral scores, texture annotations, layer scores,
and orchestration plans.

9.2. Future Work
The research described in this thesis offers many interesting perspectives for future
work in different directions that we organize here in six main themes.

High Level Modeling of Orchestration The need for high level models of orchestra-
tion has been addressed in Chapters 3 and 4. The structured framework for co-creative
orchestration would certainly benefit from new abstract intermediate objects. For the
Angeles project (Chapter 7), for example, we have defined a target loudness profile to
control the generation of orchestration plans. This and other control parameters could
be precisely formalized and introduced in the framework, together with the layer score
and the orchestration plan. For example, we believe that formally modeling target
perceptions is a necessity for future iterations of our framework. This idea relates very
closely to some of the relatively unexplored MIR tasks presented in Table 4.1. In the
table we see that there exist still very little studies on task of perception-controlled or-
chestration (C6) and that they are quite disconnected to the “traditional” orchestration
from piano task (T1).
We mention also two other under-explored tasks that are relevant to the improve-
ment of the framework. The first one is the modification of a layer score (S4). In
the Angeles project we have used handmade refinements of the layer score by the hu-
man orchestrators, but the MIR task also appears interesting to study. The second
one is texture-constrained reorchestration (S2), which is similar to texture-constrained
orchestration, but it starts from an existing orchestral score instead of a piano score.

Synergies with the TOGE and Other Orchestration Analysis Taxonomies In Section 3.1
we have given a formal definition of orchestral layers and we have described grouping
rules to annotate texture-based layers in scores. As discussed in Section 3.1.5, the same
formal definition can be used for orchestral blends from OrchARD, even though the
perception-based grouping rules from the TOGE [178] that are used to annotate them
are slightly different. In the majority of the thesis, and in particular to annotate the
corpus in Chapter 5, we have adopted the texture-based approach from our taxonomy
to identify layers, with the exception of Chapter 6, in which we have studied orchestral
blends from OrchARD. The differences between these two taxonomies are still to be
addressed in future work. A research in that direction would definitely prove beneficial
also to the research theme of perception-controlled orchestration. A first study could
compare two different analysis of the same piece. Other taxonomies in ACTOR have
followed this approach with a comparison of different analyses of Ravel’s Alborada del
Gracioso [277].

155



9. Conclusions

Co-creativity in Orchestration One of the main theme of research in this thesis was
co-creativity in orchestration. An effort was made to develop tools to allow the collabo-
ration between human artists and computers in the creation of orchestration (Chapter 8)
and to run a first experiment of co-creativity in collaboration with Mael Oudin and Gis-
sel Velarde (Chapter 7). The goal of having fully functioning models ready to be used
out of the box is still very far, and further research is required. Research perspectives in-
clude, but are not limited to, the improvement of the Transformer models. The problem
could benefit from a more targeted pretraining strategy and from a larger finetuning
dataset. Certain details that have been left behind could be implemented, in particular
what concerns the representation of music dynamics, which have not been included
so far. A more drastic change would be to move from a one-sequence language model
to a sequence-to-sequence translation model (layer score to orchestral score). Some
efforts have been made in this direction, but with no results so far. Another radical idea
consists in completely modifying the music representation in order to explicitly model
the dependency of the orchestral score from the layer score and the orchestration plan
with transformation rules.
The need for large scale orchestral thinking and anticipation emerged from the Angeles
project. Future models for orchestration plans should try to better model the relation-
ships between consecutive segments, for example allowing to “reserve” instruments
for a specific climax in the piece.
Finally, once more stable tools exists, a more controlled study on co-creativity could
be envisioned, addressing also agency and the perception of the AI model by human
artists. Another study could also compare how different artists approach co-creative
orchestration with the same tools.

Orchestration Analysis Large scale computational analysis of orchestral texture has
also been very little explored in this thesis. An effort in that direction would be
beneficial also to other research themes, as it could help produce larger annotated
datasets for texture-controlled generation. One research direction is that of finetuning
large language models like the Transformers from Chapter 8 for a texture analysis task.
Another possible approach consists in adapting the blend detection algorithm from
Chapter 6 for the identification of texture layers in the symphonies’ corpus. These two
models are in a preliminary stage of development with further research required.

Corpus Expansion The expansion of the corpus is the “fil rouge” that connects all the
research themes presented so far. The interaction between corpus and research goes in
both directions. New research can lead to the expansion of the corpus with new objects,
new analysis, and additional pieces, and the expansion of the corpus can provide new
data to train Machine Learning models for analysis and generation tasks.
The corpus can be extended horizontally by annotating new pieces, synchronizing pub-
lic domain recordings, and creating layer scores. To expand the reference analysis on
the classical style the corpus could be enlarged by including the other movements of
the symphonies already present. Alternatively, similar studies could extend and use
measure-level annotations to romantic works such as symphonies by Berlioz or Mahler
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or to 20th-century music. Such orchestral music will generally have an increased com-
plexity, with more diverse instruments, playing techniques, and textural effects. The
concept of orchestral layer will probably also be challenged, requiring an extension
of the theory to modern writing styles. A comparison of our taxonomy with other
perception-based taxonomies would be very beneficial also to this kind of study. It
will also be more challenging to find encodings of coherent corpora with full orchestral
scores.
Moreover, the corpus can be extended vertically, by adding material of different kinds
including new abstract models of orchestration, perception annotations, or other com-
plementary analysis following alternative taxonomies.

A Theory of Texture Finally, in a broader perspective, we have made several steps
towards the formalization of orchestral texture. Future work should continue advancing
in this direction, aiming at a more general theory of texture, capable of describing music
in different styles and for a wider range of ensembles (for example piano solo, string
quartet, and classical orchestra). While the language that we developed for orchestral
texture annotations works quite well for describing western classical style orchestration,
it might not be suitable for later compositions, and it cannot be applied as it is to music
for different ensembles. The introduction of the layer score as an intermediate (or a
common ancestor) between the orchestral score and the piano reduction, is a promising
starting point for expanding the theory.
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A. Annotation Syntax
This appendix reports the syntax for the annotation of orchestral layers and textures
used in the corpus.

Instruments

Instrument name Syntax
Flute Fl

Oboe Ob

Clarinet Cl

Bassoon Fg

Horn Hrn

Trumpet Trp

Timpani Timp

Violin 1 Vln1

Violin 2 Vln2

Viola Vla

Cello Vc

Double bass Cb

Table A.1.: Syntax for the annotation of instruments.

The syntax for the instruments is reported in Table A.1. An annotation file begins with
the definition of the orchestral ensemble, as a list of instruments divided into their
instrumental families in the following format:

InstList: Wood:Fl.Ob.Cl.Fg|Brass:Hrn.Trp|Perc:Timp|Strings:Vln1.Vln2.Vla.Vc.Cb

Relations

Homorhythm (-h), parallel motion (-p), and unison or octave doublings (-u).

Roles

The syntax for the roles is reported in Table A.2. Annotating sub-roles is optional. When
a sub-role is used, the main role can be omitted for brevity, such as decmel instead of
mel+rhythm::decmel. Optional rhythm precision can be added to a role, such as:
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A. Annotation Syntax

Roles and sub-roles Syntax
Melody mel

Imitation mel::imitation

Rhythmic accompaniment rhythm

Repeated notes rhythm::repeat_note

Oscillation rhythm::osc

“Batterie” rhythm::batt

Arpeggio rhythm::arp

Scale rhythm::scale

Harmonic accompaniment harm

Mixed
Decorative melody mel+rhythm::decmel

Sparse elements or Sparse chords harm+rhythm::sparse

Table A.2.: Syntax for the annotation of roles and sub-roles.

• rhythm16::repeat_note: Rhythmic accompaniment composed of semiquavers

• . . .

Layers

A layer is composed of an identifier id that gathers instruments, their relation and an
optional role (if the role is omitted, its role is considered as None). Layers are annotated
as:

id:role-relation

or
id:-relation

A ~ can be added ~id:role-relation, meaning that the layer continues from a previous
segment, as described below.

Identifiers

An identifier is a letter used to group instruments belonging to the same layer. We
adopt the following (non-compulsory) convention for chosing the letter.

• Melody: a, b, c, d, . . .

• Rhythmic accompaniment: r, s, u, v, . . .

• Harmonic accompaniment: h, i, l, m, . . .

• Tutti (or almost all instruments): t
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Segment

A segment is composed of mulitple layers. Segments are annotated as:
[measure_range] <identifiers> layer1 layer2 ... {specification}

measure_range is the range of the segment, the order of <identifiers> is defined by
the ensemble InstList at the beginning of the file, the optional {specification} can
describe further properties or effects such as CR (Call-and-response) schemes.

Example A.1. Consider the following line.
[5] <h000|h0|0|rrrr0> h:harm-p r:repeat_note-h

Using the same heading InstList defined above, at measure 5, two layers are heard:

• A layer (identified by h:) composed of flutes and horns playing sustained har-
monic in parallel motion.

• A layer (identified by r:) composed of violins 1 & 2, violas and cellos playing
repeated notes in homorhythm.

Layers that continues through different segments can be annotated as ~layer. This
allows the instrumentation of a given layer to change at a successive measure.

Example A.2. Consider the following lines.
[5] <h000|h0|0|rrrr0> h:harm-p r:repeat_note-h

[6-7] <h000|00|0|aa000> ~h:harm-p a:mel-u

The harmonic layer first played by flutes and horns in measure 5 continues in measures
6 and 7, with flutes only.

Separated instruments (divisi) which belong to different layers can be entered with
parenthesis, such as <(ha)000|h0|0|rrrr0>, where the flutes have been split in two.

Measure Range

A measure range can be specified by any combination of single measures or ranges,
such as [1-6], [4], [1-6,8], or [1-6,15-17,19].

Meta-Layers
The optional {specification} can describe further properties or effects such as CR
(Call-and-response). The typical structure is the following.

{XX frequency (identifiers1)[measure-list](identifiers2)[measure-list]...}

• XX indicates the kind of effect, for example CR (Call-and-Response) or TE (Timbral
Echoes),

• frequency is a number that has a different meaning according to the effect,
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• identifiers contains a list of identifiers (parenthesis are omitted if only one
identifier is present) and

• measure-list contains the measures to which the identifiers refer to.

Example A.3. Consider the following specification.
{CR 1 a[595,597]a{596,598}}

This means that there is a call and response scheme in measures 595-598 between the
instruments identified with a in measures 595 and 597, and the instruments identified
with a in measures 596 and 598. The call and the response alternates with a frequency
of 1 measure.

Score

The full score is composed of segments.
Comments are entered at any location with # Comment.
Formal sections are annotated beginning with #!label Comment. In this case, segments
between a line #!label1 and #!label2 are labeled as label1.
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B. Constructing Layer Scores

Here are the steps to build a layer score from an existing musical score: we start by
analyzing it to identify its layers, we reduce them to their essential elements (main
melodic lines, rhythmic figures, and pitches forming the harmony), and then we write
the notes in a score with as many staves as layers. These staves do not carry instrument
names but are named after the abstract layers to which they correspond.
In practice a layer score can be created in different ways and for different purposes. We
can classify layer scores for three aspects. The first one is its origin: we can build a layer
score starting from an orchestral score, a piano score, or a score for a different ensemble
(for example for solo guitar or for string quartet, among others). In case two or more
versions of the same piece exists we would expect only one common layer score for them
all. The second aspect is that of the purpose, the final goal for which a layer score is
constructed. This can be purely analytical, to facilitate the study and the comprehension
of the music, or it can be in the context of a creative project, like an orchestration or
a piano reduction. Finally, these operations can be done completely manually, or
automated algorithmically. In Table B.1, we classify some of the experiences that have
been done in the context of this thesis for origin, goal, and procedure.

Origin Score Goal Procedure
Excerpt n meas. Piano Orchestral Analytic/Corpus Co-creative Project Manual Automated

HMB Symphonies
corpus

(Appendix B.1)

8528 yes both yes

Mozart, Symphony
No. 40 (Exposition)

(Appendix B.2)

101 yes yes both

Velarde, Angeles
(mov. 2 and 6)
(Section 7.2)

109 yes yes yes

Table B.1.: Classification of three aspects of constructed layer scores: origin (piano or
orchestral score), goal (for analysis and corpus creation purposes or for a
(co-)creative project), and construction procedure (manual or automated).
The full Haydn, Mozart, and Beethoven (HMB) symphonies corpus has
automated layer scores, whereas we manually produced layer scores for the
two movements of the Angeles project. The layer score for the exposition
(measures 1-101) of Mozart Symphony No. 40 has been automated, and
manually revised.
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B. Constructing Layer Scores

B.1. Algorithmic Construction of Layer Scores from
Annotated Orchestral Scores

To model certain tasks in orchestration it can be useful to have at one’s disposal a dataset
of layer scores, paired with orchestral scores. The operation of writing layer scores
completely manually, either by imputing notes on a blank score or by modifying the
orchestral score, is extremely time consuming, so we decided to generate automatically
the layer scores of the first movements of Symphonies by Haydn, Mozart, and Beethoven
in the corpus, starting from the orchestral scores and the annotations of texture (Task
T4). We have implemented a simple algorithm (Algorithm 1) in python to work with
tokenized MIDI files (using the tokenization method presented in Section 8.1) but
it could be implemented also to work directly with MIDI files and with musicXML
scores.
Some practical considerations are that the number of layers in a piece can easily be
over what is possible to fit in a page of a printed score. Moreover, layers have a
limited time span. Thus, assigning one staff to each layer would result in a very sparse
score, with silence almost everywhere. Consider for example an orchestral layer that
contains two instruments for the first 3 measures of a piece. From measure 4 onward,
the corresponding staff in the layer score would be completely filled with pauses.
For practical reasons, we adopt a compressed representation in the implementation.
Consider that each layer has a limited time span, with a beginning and an end. At
the beginning of the piece we initialize the layer score with a number of staves that
corresponds to the number of layers that have their beginning at measure 1. We place
each of these layers in one of the staves, and then we proceed measure by measure.
When a layer reaches its end, the staff on which it is written becomes available for other
layers whose beginning is later in time. When a new layer starts, we place it on the first
staff that is available starting from the top of the page, and if no staff is available, a new
one is created to fit the new layer. The positions in the score of layers are recorded in a
file with a similar format of that of the annotations, with the difference that each layer
is mapped to one and only one staff.
Another practical problem is that of notes that do not belong to any layer. The end of a
melodic layer, for example, usually coincides with the end of a phrase, which might be
concluding with a note on the downbeat of a measure. According to annotation rules,
this measure is not annotated as belonging to the same layer as the rest of the phrase.
It could be part of a new layer that is starting there, or part of no layer if the rest of the
measure consists of a pause. The same would happen for an anacrusis at the start of a
phrase. It is not annotated as belonging to the layer whose annotation starts from the
immediately following measure. Since those notes might not belong to any layer, there
are several alternative strategies to deal with them in a layer score. One is to simply
discard them, another one is to store them in a special staff dedicated to them (the first
one, indexed by 0), and the third option would be to extend the layer to include them.
The second strategy is the one we have adopted in our implementation. Notice that
to discard all those notes, it is sufficient to erase the first staff from the output score.
Further work should be done on the evaluation of the layer scores resulting from this
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procedure. Quantities to assess the coherence of the resulting score and its adherence
to the original orchestral score content should be defined. At this stage we subjectively
assess them by visual inspection.

Algorithm 1: Construction of a layer score from an annotated orchestral score
layer_score← empty_score;
available_staves← [];
list_of_current_layers← [];
for m ∈M do

Retrieve from the annotations the layers ending at measure m;
for layer ended at measure m − 1 (skip if m == 1) do

Add corresponding staff s to available_staves;
Remove layer from list_of_current_layers;

end
Retrieve from the annotations the layers starting at measure m;
for layer starting at measure m do

if available_staves is not empty then
Select the lowest staff number s in available_staves;
Remove s from available_staves;

else
Retrieve the highest staff number h in layer_score ;
Create new staff with staff number s = h + 1 in layer_score ;

end
Append layer identifier and staff number s to list_of_current_layers;

end
for ins ∈ ℰ do

if (meas, ins) belongs to a layer in the annotations then
current_layer← layer(meas, ins);
Search for staff s corresonding to current_layer in
list_of_current_layers;

Put notes from orchestral_score at (meas, ins) in layer_score at
(meas, s);

end
end
for s ∈ layer_score do

Reorder notes in time;
Remove duplicate notes;

end
end
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(a) Orchestral Score. 11 tracks/instruments (5 in this extract)
Transcribed by Samuel Ricke on musescore.com
Textural labels from [149]. Melody: Vln1, Vln2; Oscillation: Vla (divided); Sparse: Vc, Cb

(b) Layer Score. 3 layers.

Figure B.1.: Beginning (measures 1-8) of the first movement of Symphony No. 40 by
Mozart, k550. Orchestral score and manually curated layer score. The
excerpt present a typical homophonic texture with melody and accompa-
niment. (a) The orchestral score can be decomposed into three layers: one
with a melodic role (red, dark), one with a rhythmic role with sub-role os-
cillation (blue, light), and a third one with a rhythm and harmony mixed
sparse role (yellow, very light). (b) The layer score contains one part for
each of these three layers, λmel, λoscillation, and λsparse. Octave doublings have
been kept here to highlight the subjectivity of choosing between them.

B.2. Manually Curating Layer Scores
When inspecting the results generated by the algorithm, there are a few weaknesses
that emerged, For instance the undefined behavior for divisi instruments. A second
problem is that of anacruses and phrase endings that we already mentioned in the
previous section. In a good layer score, we would expect them to appear on the
staff corresponding to the layer the rest of the phrase belongs to. Another fact is the
presence of octave doublings, for which one octave should be selected. The criterion
for the selection is not clear. For example, we might want to select the upper octave of
a melodic layer in which the violin 2 doubles the violin 1 an octave lower, but we might
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(a) Orchestral Score. 11 tracks/instruments (8 in this extract)
Transcribed by Samuel Ricke on musescore.com
Textural labels from [149]. Melody: passed around the orchestra; Decorative melody: Vla Vc,
Cb

(b) Layer Score. 2 layers.

Figure B.2.: Second theme (measures 44-53) from the exposition of the first movement
of Symphony No. 40 by Mozart, k550. Orchestral score and manually
curated layer score. The texture of the excerpt is almost monophonic, with
a melody passed around the orchestra, and occasionally supported by an
homorhythmic part. The dialog between the different timbres is one of
the most important elements of this excerpt. (a) The orchestral score can
be decomposed into two layers: one with a melodic role (red, dark), and a
second one with a decorative melody role (blue, light). (b) The layer score
contains one part for each of the layers, λmel, and λdecmel. Octave doublings
have been kept here to highlight the subjectivity of choosing between them.

want to select the lower octave when the piccolo flute doubles other parts an octave
higher. One last problem that we observe is the fact that there is no coherent order of
layer types in the staves of the score. For example, it seams reasonable to have the main
melodic line always on the first staff, and we might want that, when a melody finishes,
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(a) Layer Score. 6 layers. One Melody layer, four Harmony layers, and one Repeated Notes layer.

Figure B.3.: End of the first theme (measures 38-41) from the exposition of the first
movement of Symphony No. 40 by Mozart, k550. Manually curated layer
score. The texture of the excerpt is homophonic, with a main melody and
the support of harmonic and rhythmic layers. Several harmonic layers are
created starting from the annotations, even if the first three could reasonably
be merged into one (non homorhythmic) layer. Octave doublings in the
Repeated Notes layer have been kept here to highlight the subjectivity of
choosing between them.

the new one starts on the same staff as the previous one. There is no control on that in
our algorithm.
Many of these problems were indeed avoided when creating the example displayed
in Figure 3.16 to introduce layer scores. The Front layer with anacruses that is passed
around different instruments of the orchestra, would be constructed very poorly by
our algorithm, but its relatively easy to analyze by hand. The Rhythm layer has octave
doublings that were manually removed in the layer score. Moreover we were able
to keep dynamic prescriptions that instead get lost when converting scores in MIDI
format.
In order to grasp a better understanding of these problems, and to start conceiving some
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possible solutions that could be put in place, we perform a manual review and curation
of one of the layer scores that where produced automatically by Algorithm 1. This is
the exposition of the first movement of Mozart’s Symphony No. 40 (see Figure B.1, B.2,
and B.3 for some excerpts). When performing curation we have decided to reattach
the notes outside of layers to the layers they logically belong to, and we have ordered
the layers in the staves placing melodies on the top line. However we have not deleted
octave doublings, to highlight the subjectivity of this task in the examples. Another
observation emerged about harmonic layers: it can be argued that some of them could
be merged together. They have been separated because they are not homorhythmic,
but still those sustained notes form one “tapis sonore” that might be put together in an
abstract representation like the layer score. In Figure B.3, we have kept four harmonic
layers separate, following the annotations, but merging the first three would not be
surprising. These considerations on correcting layer scores should be better formalized
to improve the algorithm to create layer scores and to build criteria for its evaluation.

B.3. Creating Layer Scores from Piano Scores
Layer scores can also be constructed from piano scores (Task T3). We have experimented
with creating them by hand in the context of the Angles project with the objective to use
them for the co-creation of an orchestration with humans and algorithms. The project
and the preparation of the layer scores in that context has been discussed in Chapter 7.
Automatizing this task of creating a layer score from a piano score is another interesting
problem. This is still Task T3, that is related to piano texture analysis (Task A2) and
voice identification in polyphonic scores, tasks that have not been explored in this
thesis.

195


	Cover
	Contents
	Abstract
	Resumé
	Acknowledgments
	1 Introduction
	2 State of the Art
	2.1 What is Orchestration?
	2.1.1 Orchestration and Texture
	2.1.2 Timbre and Orchestration in Music Perception
	2.1.3 Orchestration is a Multi-Scale Problem

	2.2 Symbolic Music Representations
	2.3 Computational Music Analysis and Orchestration
	2.3.1 Models and Algorithms for Voices, Streams, and Layers
	2.3.2 Modeling and Analyzing Texture
	2.3.3 Analyzing Orchestral Texture
	2.3.4 Analyzing Orchestration

	2.4 Music Generative Models
	2.4.1 Algorithmic Music Generation from Procedural Methods to the AI Era
	2.4.2 Machine Learning for Symbolic Music Generation (Transformers and Other Modern Architectures)
	2.4.3 Computational Creativity and Music Generation
	2.4.4 Generative Tasks Related to Orchestration

	2.5 Orchestral Music Corpora

	I Modeling Orchestration
	3 Abstract Models of Orchestration
	3.1 A Taxonomy to Describe Orchestral Layering in Classical and Early-Romantic Symphonies
	3.1.1 Grouping Instruments into Layers
	3.1.2 Formal Formulation of the Layers' Taxonomy
	3.1.3 Layer Descriptions: Roles and Relations
	3.1.4 Properties of Layers and Orchestral Texture
	3.1.5 Orchestral Layers and OrchARD Blends

	3.2 The Layer Score
	3.2.1 Behind Orchestral Music: Composer/Orchestrator Sketches
	3.2.2 Defining and Modeling a Layer Score
	3.2.3 Formal Formulation of a Layer Score

	3.3 The Orchestration Plan
	3.3.1 Planning in Traditional Orchestration Practice
	3.3.2 Formal Formulation of the Orchestration Plan
	3.3.3 Orchestration Plans and Texture Annotations: Differences and Similarities
	3.3.4 Transforming Abstract Layers into Orchestral Layers


	4 A Framework for Co-Creative Interaction in Orchestration
	4.1 Reclassifying Orchestration Tasks in MIR
	4.2 The Case of Computer-Assisted Orchestration (Task T1)
	4.2.1 A Process in Three Steps
	4.2.2 Ways of Interaction and Specific Implementations



	II Orchestral Music Analysis
	5 A Multi-Modal Corpus of First Movements of Symphonies in the Classical Style
	5.1 Corpus Content: Scores, Annotations, and Recordings
	5.1.1 Orchestral Scores
	5.1.2 Orchestral Texture Annotations
	5.1.3 Sonata Form Annotations
	5.1.4 Layer Scores
	5.1.5 Synchronizing with Recordings and Visualizing the Corpus on Dezrann

	5.2 Statistical Analysis of the Corpus
	5.2.1 Layer Roles and Relations
	5.2.2 Instrument Association
	5.2.3 Instrument Roles
	5.2.4 Texture and Form

	5.3 Conclusions

	6 Detection of Orchestral Blends from Scores using Machine Learning
	6.1 Introduction and Goals
	6.2 Related Work
	6.3 Data
	6.4 Modeling Approach
	6.4.1 Ground Truth Encoding
	6.4.2 Feature Engineering
	6.4.3 Training Machine Learning Models
	6.4.4 Model Evaluation

	6.5 Results and Discussion


	III Orchestration and Co-creativity
	7 Co-creative orchestration of Angeles
	7.1 Goal and Contents
	7.2 Creating the Layer Scores for Angeles
	7.3 Creating Personalized Orchestration Plans for Angeles
	7.3.1 Generating Orchestration Plans with Markov Models
	7.3.2 The orchestration plan of Angeles

	7.4 Writing and Performing the Orchestral Score
	7.5 Discussion and Perspectives

	8 Orchestration with Transformers
	8.1 An Extended Tokenization of Music and Texture
	8.2 Experiments
	8.2.1 First Modeling Experiment: Adapting SymphonyNet with Texture
	8.2.2 Second Modeling Experiment: New Sequential Strategy for Finetuning, Separating Layer Scores from Orchestral Scores
	8.2.3 Third Modeling Experiment: Permutation Invariance Improvements and Implementation Flexibility
	8.2.4 Last Modeling Experiment: Enforcing Note-Level Constraints

	8.3 Conclusions and Perspectives


	Conclusions
	9 Conclusions
	9.1 Summary
	9.2 Future Work


	Bibliography
	Bibliography

	Appendices
	A Annotation Syntax
	B Constructing Layer Scores
	B.1 Algorithmic Construction of Layer Scores from Annotated Orchestral Scores
	B.2 Manually Curating Layer Scores
	B.3 Creating Layer Scores from Piano Scores



